證明:f(x)=2 x2-4x+3在(2,+∞)上是增函數(shù).
考點:函數(shù)單調性的判斷與證明
專題:計算題,函數(shù)的性質及應用
分析:運用單調性的定義,注意作商、變形、定符號和下結論,結合指數(shù)函數(shù)的單調性,即可證得.
解答: 證明:設2<m<n,則
f(m)
f(n)
=
2m2-4m+3
2n2-4n+3
=2m2-4m+3-(n2-4n+3)
=2(m-n)(m+n-4),
由2<m<n,可得,m-n<0,m+n-4>0,
則有(m-n)(m+n-4)<0,
則2(m-n)(m+n-4)<1,
且f(n)>0,
即有f(m)<f(n),
則有f(x)在(2,+∞)上是增函數(shù).
點評:本題考查函數(shù)的單調性的證明,考查運用定義證明單調性,注意作商、變形、定符號和下結論,考查運算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題p:3x+
1
x
+2≤2.命題q:x2-2x+1-m2≤0(m>0).若¬p是¬q的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線
x2
9
-
y2
16
=1上一點P到它的一個焦點的距離為7,則點P到另一個焦點的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

畫出下列函數(shù)圖象:
(1)y=2x2-4x-3;
(2)y=|x+2|-|x-5|;
(3)f(x)=|x2-1|;
(4)y=
2x+7
x+3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{xn}滿足下列條件:x1=a,x2=b,xn+1-(λ+1)xn+λxn-1=0(n∈N*且n≥2),其中a、b為常數(shù),且a<b,λ為非零常數(shù),猜想xn的通項公式,并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an+1=2nan,且a1=1,求an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為選拔選手參加“中國謎語大會”,某中學舉行了一次“謎語大賽”活動.為了了解本次競賽學生的成績情況,從中抽取了部分學生的分數(shù)作為樣本(樣本容量為n)進行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(Ⅰ)求樣本容量n和頻率分布直方圖中的x、y的值;
(Ⅱ)在選取的樣本中,從競賽成績在80分以上(含80分)的學生中隨機抽取3名學生參加“中國謎語大會”,設隨機變量X表示所抽取的3名學生中得分在(80,90].內的學生人數(shù),求隨機變量X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線x+y+m=0與曲線(
x2
-|y|)(x2+y2-1)=0有唯一公共點,則m的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=3,AB=2,BC=
3
,則二面角P-BD-A的正切值為
 

查看答案和解析>>

同步練習冊答案