分析 通過將點An(n,αn)(n∈N*)代入$f(x)=\frac{1}{x+1}$化簡可知An(n,$\frac{1}{n+1}$)(n∈N*),進(jìn)而利用向量可求|cosθn|=$\frac{1}{\sqrt{{n}^{2}(n+1)^{2}+1}}$,通過平方關(guān)系可知|sinθn|=$\frac{n(n+1)}{\sqrt{{n}^{2}(n+1)^{2}+1}}$,進(jìn)而裂項可知|$\frac{cos{θ}_{n}}{sin{θ}_{n}}$|=$\frac{1}{n}$-$\frac{1}{n+1}$,并項相加即得結(jié)論.
解答 解:∵由已知可得,αn=$\frac{1}{n+1}$,即An(n,$\frac{1}{n+1}$)(n∈N*),
又∵向量$\overrightarrow{i}$=(0,1),
∴|cosθn|=|$\frac{\overrightarrow{i}•\overrightarrow{O{A}_{n}}}{|\overrightarrow{i}|•|\overrightarrow{O{A}_{n}}|}$|=|$\frac{0+\frac{1}{n+1}}{1•\sqrt{{n}^{2}+\frac{1}{(n+1)^{2}}}}$|=$\frac{1}{\sqrt{{n}^{2}(n+1)^{2}+1}}$,
由平方關(guān)系可知,|sinθn|=$\sqrt{1-co{s}^{2}{θ}_{n}}$=$\frac{n(n+1)}{\sqrt{{n}^{2}(n+1)^{2}+1}}$,
∴|$\frac{cos{θ}_{n}}{sin{θ}_{n}}$|=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴所求值為1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{2016}$-$\frac{1}{2017}$=1-$\frac{1}{2017}$=$\frac{2016}{2017}$,
故答案為:$\frac{2016}{2017}$.
點評 本題考查數(shù)列的求和,涉及利用向量求夾角的余弦值、平方關(guān)系,考查裂項相消法,注意解題方法的積累,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | sin3x | B. | cos3x | C. | -sin3x | D. | -cos3x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,0,0) | B. | (-4,0,0) | C. | (0,0,-3) | D. | (0,-3,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ③④ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{5π}{12}$,$\frac{11π}{12}$],k∈Z | B. | [$\frac{5π}{12}$+kπ,$\frac{11π}{12}$+kπ],k∈Z | ||
C. | [$-\frac{π}{12}$+2kπ,$\frac{5π}{12}$+2kπ],k∈Z | D. | [-$\frac{π}{12}$+kπ,$\frac{5π}{12}$+kπ],k∈Z |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com