14.在復平面內,復數(shù)$\frac{-1+i}{i}$對應的點位于第一象限.

分析 由復數(shù)代數(shù)形式的乘除運算化簡復數(shù)$\frac{-1+i}{i}$,求出復數(shù)$\frac{-1+i}{i}$在復平面上對應的點的坐標,則答案可求.

解答 解:$\frac{-1+i}{i}$=$\frac{-i(-1+i)}{-{i}^{2}}=1+i$,
則復數(shù)$\frac{-1+i}{i}$在復平面內對應的點的坐標為:(1,1),位于第一象限.
故答案為:一.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的代數(shù)表示法及其幾何意義,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

18.已知f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),且f(x)+g(x)=($\frac{1}{2}$)x.若存在x0∈[$\frac{1}{2}$,1],使得等式af(x0)+g(2x0)=0成立,則實數(shù)a的取值范圍是[2$\sqrt{2}$,$\frac{5}{2}$$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知直線x=t與函數(shù)f(x)=lnx和g(x)=a+ax-x2的圖象分別交于M、N兩點,O為坐標原點,當直線OM、ON的斜率之差kOM-kON在區(qū)間t∈[1,+∞)上單調遞增時,實數(shù)a的取值范圍為( 。
A.[-2,+∞)B.(-∞,-2]C.(-2,+∞)D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列命題正確的是( 。
A.垂直于同一條直線的兩直線平行
B.垂直于同一條直線的兩直線垂直
C.垂直于同一個平面的兩直線平行
D.垂直于同一條直線的一條直線和平面平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.(1)解不等式:$\frac{3x-1}{2-x}≥1$;
(2)若3<a<8,1<b<9,求2a-b和$\frac{a}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.等比數(shù)列{an}的前n項和為S„,已知S1,S3,S2,成等差數(shù)列.
(1)求{an}的公比q;
(2)等差數(shù)列{bn}中,b5=9,公差d=4q,求數(shù)列{bn}的前n項和Tn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.定義在R上的奇函數(shù)f(x)滿足:當x>0時,f(x)=$\frac{4}{x}$+x2,則f(-2)=-6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知數(shù)列{an}的各項均為正整數(shù),其前n項和為Sn,若${a_{n+1}}=\left\{\begin{array}{l}\frac{a_n}{2},{a_n}是偶數(shù)\\ 3{a_n}+1,{a_n}是奇數(shù)\end{array}\right.$,且a1=5,則S2015=( 。
A.4740B.4725C.12095D.12002

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知函數(shù)$f(x)=\frac{1}{x+1}$,點O為坐標原點,點An(n,f(n)),n∈N*,向量$\overrightarrow{i}$=(0,1),θn是向量$\overrightarrow{O{A_n}}$與$\overrightarrow{i}$的夾角,設sn為數(shù)列$\{|\frac{cos{θ}_{n}}{sin{θ}_{n}}|\}$的前n項和,則s2016=$\frac{2016}{2017}$.

查看答案和解析>>

同步練習冊答案