有四個數(shù),前三個數(shù)成等差數(shù)列,后三個數(shù)成等比數(shù)列,且這四個數(shù)的首末兩項之和為37,中間兩項和為
36,求這四個數(shù).
考點:等比數(shù)列的通項公式,等差數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:由題知,首末兩數(shù)之和為37,中間兩數(shù)之和為36,設(shè)四個數(shù)為
37
2
-a,18-b,18+b,
37
2
+a
,由此能求出四個數(shù).
解答: 解:由題知,首末兩數(shù)之和為37,中間兩數(shù)之和為36,
所以設(shè)四個數(shù)為
37
2
-a,18-b,18+b,
37
2
+a
,
前三個數(shù)成等差數(shù)列
得到2(18-b)=(18+b)+(
37
2
-a)
即a=3b+
1
2

后三個數(shù)成等比數(shù)列
得到(18+b)2=(18-b)(
37
2
+a),
將a=3b+
1
2
代入
得(18+b)2=(18-b)(19+3b)
即182+36b+b2=18*19+35b-3b2
即4b2+b-18=0
解得b=2,或b=-
9
4

對應(yīng)的a=6.5,或a=-
25
4

所以,四個數(shù)為
12,16,20,25,或
99
4
,
81
4
,
63
4
,
49
4
點評:本題考查四個數(shù)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列和等比數(shù)列的性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,點A為橢圓上一點,當(dāng)△AF1F2的面積最大時,△AF1F2為等邊三角形.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)動直線y=kx+m與橢圓有且只有一個公共點P,且與直線x=4相交于點Q,若x軸上存在一定點M(1,0),使得
PM
QM
=0,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z=
1-2i
m-i
(m∈R)在復(fù)平面上對應(yīng)的點為Z.
(1)若點Z位于直線y=3x上,求m的值;
(2)若點Z位于第一象限,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直三棱柱A1B1C1-ABC中如圖1,AC⊥BC,D為AB中點,CB=1,AC=
3
,異面直線C1D與A1B1所成角大小為arccos
1
4

(1)在圖2中畫出此三棱柱的左視圖和俯視圖;
(2)求三棱錐C1-CBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知五棱錐P-ABCDE中,PA⊥平面ABCDE,五邊形ABCDE中,BA⊥AE,AB⊥BC,AB=2
3
,PA=BC=CD=DE=EA=2.
(1)證明:BE∥平面PCD;
(2)若M、N、F分別是BE、PC、CD的中點,證明:平面MNF⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC三個頂點的坐標(biāo)分別是A(0,2),B(1,1),C(1,3).若△ABC在一個切變變換T作用下變?yōu)椤鰽1B1C1,其中B(1,1)在變換T作用下變?yōu)辄cB1(1,-1).
(1)求切變變換T所對應(yīng)的矩陣M;
(2)將△A1B1C1繞原點O按順時針方向旋轉(zhuǎn)30°后得到△A2B2C2.求△A2B2C2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB.
(Ⅰ)若F為CD中點,證明:EF∥平面ABC;
(Ⅱ)若AB=BD,求直線EB與平面BCD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1(-1,0),F(xiàn)2(1,0),點(1,e)在橢圓上,其中e為橢圓的離心率.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A、B是橢圓上位于x軸上方的兩點,且直線AF1與直線BF2平行,AF2與BF1交于點P.試用|AF1|,|BF2|表示|PF1|+|PF2|,并證明|PF1|+|PF2|是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x-a)(x-b),則當(dāng)a、b在區(qū)間[0,1]內(nèi)變化時,f(0)•f(1)的最大值等于
 

查看答案和解析>>

同步練習(xí)冊答案