【題目】如果集合A,B,同時(shí)滿足A∪B={1,2,3,4},A∩B={1},A≠{1},B≠{1},就稱有序集對(duì)(A,B)為“好集對(duì)”.這里有序集對(duì)(A,B)意指,當(dāng)A≠B時(shí),(A,B)和(B,A)是不同的集對(duì),那么“好集對(duì)”一共有( )個(gè).
A.5
B.6
C.7
D.8
【答案】B
【解析】解:∵A∪B={1,2,3,4},A∩B={1},A≠{1},B≠{1},∴當(dāng)A={1,2}時(shí),B={1,3,4}.
當(dāng)A={1,3}時(shí),B={1,2,4}.
當(dāng)A={1,4}時(shí),B={1,2,3}.
當(dāng)A={1,2,3}時(shí),B={1,4}.
當(dāng)A={1,2,4}時(shí),B={1,3}.
當(dāng)A={1,3,4}時(shí),B={1,2}.
故滿足條件的“好集對(duì)”一共有6個(gè).
方法2:∵A∪B={1,2,3,4},A∩B={1},
∴將2,3,4分為兩組,則有 =3+3=6種,
故選B.
【考點(diǎn)精析】關(guān)于本題考查的元素與集合關(guān)系的判斷,需要了解對(duì)象與集合的關(guān)系是,或者,兩者必居其一才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A中含有三個(gè)元素3,x,x2﹣2x.
(1)求實(shí)數(shù)x應(yīng)滿足的條件;
(2)若﹣2∈A,求實(shí)數(shù)x.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)()的對(duì)稱中心到對(duì)稱軸距離的最小值為.
(Ⅰ)求;
(Ⅱ)中,角的對(duì)邊分別為.已知銳角為函數(shù)的一個(gè)零點(diǎn),且,的面積,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,,,且當(dāng)時(shí),是與的等差中項(xiàng).數(shù)列為等比數(shù)列,且,.
(Ⅰ)求數(shù)列、的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(I) 討論函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)時(shí),若函數(shù)在區(qū)間上的最大值為3,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在(﹣1,1)上的函數(shù)f(x)滿足:對(duì)任意x,y∈(﹣1,1)都有f(x)+f(y)=f(x+y).
(Ⅰ)求證:函數(shù)f(x)是奇函數(shù);
(Ⅱ)如果當(dāng)x∈(﹣1,0]時(shí),有f(x)<0,試判斷f(x)在(﹣1,1)上的單調(diào)性,并用定義證明你的判斷;
(Ⅲ)在(Ⅱ)的條件下,若a﹣8x+1>0對(duì)滿足不等式f(x﹣ )+f( ﹣2x)<0的任意x恒成立,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com