【題目】已知定義在(﹣1,1)上的函數(shù)f(x)滿足:對任意x,y∈(﹣1,1)都有f(x)+f(y)=f(x+y).
(Ⅰ)求證:函數(shù)f(x)是奇函數(shù);
(Ⅱ)如果當(dāng)x∈(﹣1,0]時,有f(x)<0,試判斷f(x)在(﹣1,1)上的單調(diào)性,并用定義證明你的判斷;
(Ⅲ)在(Ⅱ)的條件下,若a﹣8x+1>0對滿足不等式f(x﹣ )+f( ﹣2x)<0的任意x恒成立,求a的取值范圍.

【答案】解:(Ⅰ)由題可知,函數(shù)y=f(x)的定義域為(﹣1,1),關(guān)于原點對稱;對于f(x)+f(y)=f(x+y).
令y=x=0,可得2f(0)=f(0),從而f(0)=0,
再令y=﹣x,可得f(x)+f(﹣x)=f(0)=0,即f(﹣x)=﹣f(x),
所以y=f(x)為(﹣1,1)上的奇函數(shù);
(Ⅱ)y=f(x)為(﹣1,1)上單調(diào)遞增,
證明如下:
設(shè)x1、x2為區(qū)間(﹣1,0]上的任意兩個自變量的值,且x1<x2
則f(x1)﹣f(x2)=f(x1)+f(﹣x2)=f(x1﹣x2);
由于﹣1<x1<x2<0,所以﹣1<x1﹣x2≤0,從而f(x1﹣x2)<0,
即f(x1)<f(x2),所以y=f(x)為(﹣1,0]上單調(diào)遞增,
又由于y=f(x)為(﹣1,1)上的奇函數(shù);
由奇函數(shù)的性質(zhì)分析可得:y=f(x)為[0,1)上單調(diào)遞增,
故y=f(x)為(﹣1,1)上單調(diào)遞增,
(Ⅲ)根據(jù)題意,若f(x﹣ )+f( ﹣2x)<0,
則有f(x﹣ )<f(2x﹣ ),
則必有 ,
解可得﹣ <x<
所以原問題等價于a﹣8x+1>0對于﹣ <x< 恒成立,
則必有a≥[8×( )﹣1]=4,即a≥4;
故a的取值范圍是[4,+∞)
【解析】(Ⅰ)根據(jù)題意,先分析函數(shù)的定義域,可得其定義域關(guān)于原點對稱,進(jìn)而令y=x=0,可得f(0)=0,再令y=﹣x,分析可得f(﹣x)=﹣f(x),即可得答案;(Ⅱ)分析可得:y=f(x)為(﹣1,1)上單調(diào)遞增,進(jìn)而證明:先用定義法證明可得y=f(x)為(﹣1,0]上單調(diào)遞增,進(jìn)而結(jié)合函數(shù)的奇偶性可得y=f(x)為(﹣1,0]上單調(diào)遞增,綜合可得答案;(Ⅲ)根據(jù)題意,由函數(shù)的奇偶性以及單調(diào)性可得:若f(x﹣ )+f( ﹣2x)<0,則必有 ,解可得x的范圍,所以原問題等價于a﹣8x+1>0對于﹣ <x< 恒成立,分析可得a的取值范圍,即可得答案.
【考點精析】利用函數(shù)奇偶性的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果集合A,B,同時滿足A∪B={1,2,3,4},A∩B={1},A≠{1},B≠{1},就稱有序集對(A,B)為“好集對”.這里有序集對(A,B)意指,當(dāng)A≠B時,(A,B)和(B,A)是不同的集對,那么“好集對”一共有( )個.
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一企業(yè)從某條生產(chǎn)線上隨機(jī)抽取30件產(chǎn)品,測量這些產(chǎn)品的某項技術(shù)指標(biāo)值,得到如下的頻數(shù)分布表:

頻數(shù)

2

6

18

4

(I)估計該技術(shù)指標(biāo)值的平均數(shù);(用各組區(qū)間中點值作代表)

(II) ,則該產(chǎn)品不合格,其余的是合格產(chǎn)品,試估計該條生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率;

(III)生產(chǎn)一件產(chǎn)品,若是合格品可盈利80元,不合格品則虧損10元,在(II)的前提下,從該生產(chǎn)線生產(chǎn)的產(chǎn)品中任取出兩件,記為兩件產(chǎn)品的總利潤,求隨機(jī)變量X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)在點處的切線與直線平行

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時,不等式恒成立,求實數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線過定點,且傾斜角為,以坐標(biāo)原點為極點,軸的正半軸為極值的坐標(biāo)系中,曲線的極坐標(biāo)方程為

(1)求曲線的的直角坐標(biāo)方程與直線的參數(shù)方程;

(2)若直線與曲線相交于不同的兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知以為圓心的圓及其上一點.

(1)設(shè)圓軸相切,與圓外切,且圓心在直線上,求圓的標(biāo)準(zhǔn)方程;

(2)設(shè)平行于的直線與圓相交于,兩點,且,求直線的方程;

(3)設(shè)點滿足:存在圓上的兩點,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知以為圓心的圓及其上一點.

(1)設(shè)圓軸相切,與圓外切,且圓心在直線上,求圓的標(biāo)準(zhǔn)方程;

(2)設(shè)平行于的直線與圓相交于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的定義域;
(2)求f(1)+f(﹣3)的值;
(3)求f(a+1)的值(其中a>﹣4且a≠1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正項數(shù)列{an}的前n項和為Sn , 且2Sn=an2+an(n∈N*),設(shè)cn=(﹣1)n ,則數(shù)列{cn}的前2017項的和為

查看答案和解析>>

同步練習(xí)冊答案