分析 根據(jù)條件可得到$\sqrt{2}$=${x}^{2}+{y}^{2}+{y}^{2}≥3\root{3}{{x}^{2}{y}^{2}{z}^{2}}$,從而可得出$xyz≤\frac{{2}^{\frac{3}{4}}}{{3}^{\frac{3}{2}}}$,當(dāng)x=y=z時(shí)取等號(hào),而$\frac{1}{x}+\frac{2}{y}=\frac{1}{x}+\frac{1}{y}+\frac{1}{y}≥3\root{3}{\frac{1}{xyz}}$,并且當(dāng)x=y=z時(shí)取等號(hào),這樣即可得出$\frac{1}{x}+\frac{2}{y}$的范圍,從而得出$\frac{1}{x}+\frac{2}{y}$的最小值.
解答 解:x,y>0,∴由${x}^{2}+2{y}^{2}=\sqrt{2}$得,$\sqrt{2}={x}^{2}+{y}^{2}+{y}^{2}≥3\root{3}{{x}^{2}{y}^{2}{z}^{2}}$,當(dāng)且僅當(dāng)x=y=z時(shí)取等號(hào);
∴$\root{3}{{x}^{2}{y}^{2}{z}^{2}}≤\frac{\sqrt{2}}{3}$;
∴${x}^{2}{y}^{2}{z}^{2}≤\frac{{2}^{\frac{3}{2}}}{{3}^{3}}$;
∴$xyz≤\frac{{2}^{\frac{3}{4}}}{{3}^{\frac{3}{2}}}$;
∴$\frac{1}{xyz}≥\frac{{3}^{\frac{3}{2}}}{{2}^{\frac{3}{4}}}$;
∴$\frac{1}{x}+\frac{2}{y}=\frac{1}{x}+\frac{1}{y}+\frac{1}{y}≥3\root{3}{\frac{1}{xyz}}$$≥\frac{{3}^{\frac{3}{2}}}{{2}^{\frac{1}{4}}}$,當(dāng)且僅當(dāng)x=y=z時(shí)取等號(hào);
∴$\frac{1}{x}+\frac{2}{y}$的最小值為$\frac{{3}^{\frac{3}{2}}}{{2}^{\frac{1}{4}}}$.
故答案為:$\frac{{3}^{\frac{3}{2}}}{{2}^{\frac{1}{4}}}$.
點(diǎn)評(píng) 考查三個(gè)正數(shù)的算術(shù)-幾何平均不等式在求最小值中的應(yīng)用,注意等號(hào)成立的條件,以及不等式的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [2,3] | B. | (0,+∞) | C. | (0,2)∪(3,+∞) | D. | (0,2]∪[3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{q}{2}$ | B. | q2 | C. | $\sqrt{q}$ | D. | $\root{n}{q}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3+2$\sqrt{2}$ | B. | 4$\sqrt{2}$ | C. | 6 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 7 | C. | 6+$\sqrt{2}$ | D. | 7+$\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com