6.設(shè)a>0,b>0,A(1,-2),B(a,-1),C(-b,0),若A,B,C三點(diǎn)共線,則$\frac{2}{a}+\frac{1}$的最小值是( 。
A.3+2$\sqrt{2}$B.4$\sqrt{2}$C.6D.9

分析 根據(jù)題意首先求出$\overrightarrow{AB}$和$\overrightarrow{AC}$的坐標(biāo),再根據(jù)兩個(gè)向量共線的性質(zhì)得到2a+b=1,然后結(jié)合所求的式子的結(jié)構(gòu)特征利用基本不等式求出其最小值.

解答 解:由題意得:$\overrightarrow{AB}$=(a-1,1),$\overrightarrow{AC}$=(-b-1,2).
又∵A、B、C三點(diǎn)共線,
∴$\overrightarrow{AB}$∥$\overrightarrow{AC}$,從而(a-1 )×2-1×(-b-1)=0,
∴可得2a+b=1.
又∵a>0,b>0
∴$\frac{2}{a}$+$\frac{1}$=($\frac{2}{a}$+$\frac{1}$)•(2a+b)=5+($\frac{2b}{a}$+$\frac{2a}$)≥5+4=9,
故選:D.

點(diǎn)評(píng) 解決此類問題的關(guān)鍵是熟練掌握向量共線與點(diǎn)共線之間的關(guān)系,以及兩個(gè)向量共線時(shí)坐標(biāo)形式的運(yùn)算公式,考查基本不等式的應(yīng)用,此題得到2a+b=1是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知cos($\frac{2π}{3}$-α)=$\frac{1}{3}$,且-$\frac{4π}{3}$<α<$\frac{π}{6}$,求cos($\frac{5π}{6}$+α)和tan($\frac{11π}{6}$+α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知3x2+y2≤1,則3x+y的取值范圍是(  )
A.[-4,4]B.[0,4]C.[-2,2]D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.己知x,y都是正數(shù),且x2+2y2=$\sqrt{2}$,則$\frac{1}{x}$+$\frac{2}{y}$的最小值是$\frac{{3}^{\frac{3}{2}}}{{2}^{\frac{1}{4}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若數(shù)列{an}的通項(xiàng)公式an=5($\frac{2}{5}$)2n-2-4($\frac{2}{5}$)n-1(n∈N*),{an}的最大項(xiàng)為第p項(xiàng),最小項(xiàng)為第q項(xiàng),則q-p等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.命題“對(duì)于任意角θ,cos4θ-sin4θ=cos2θ”的證明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ.”該過程應(yīng)用了( 。
A.分析法B.綜合法C.間接證明法D.反證法

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.等差數(shù)列{an}中,a4+a7+a9+a12=32,則能求出值的是(  )
A.S12B.S13C.S15D.S14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某位同學(xué)為了研究氣溫對(duì)飲料銷售的影響,經(jīng)過對(duì)某小賣部的統(tǒng)計(jì),得到一個(gè)賣出的某種飲料杯數(shù)與當(dāng)天氣溫的對(duì)比表.他分別記錄了3月21日至3月25日的白天平均氣溫x(℃)與該小賣部的這種飲料銷量y(杯),得到如下數(shù)據(jù)
日    期3月21日3月22日3月23日3月24日3月25日
平均氣溫x(°C)810141112
銷量y(杯)2125352628
(1)若先從這五組數(shù)據(jù)中任取2組,求取出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(3)根據(jù)(2)中所得的線性回歸方程,若天氣預(yù)報(bào)3月26日的白天平均氣溫7(℃),請(qǐng)預(yù)測(cè)小賣部的這種飲料的銷量.(參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知θ為鈍角,且sinθ+cosθ=$\frac{1}{5}$,則tan2θ=( 。
A.-$\frac{24}{7}$B.$\frac{24}{7}$C.-$\frac{7}{24}$D.$\frac{7}{24}$

查看答案和解析>>

同步練習(xí)冊(cè)答案