【題目】閱讀如圖所示的程序框圖,若輸出的數(shù)據(jù)為58,則判斷框中應(yīng)填入的條件為( )
A.k≤3
B.k≤4
C.k≤5
D.k≤6
【答案】B
【解析】解:當(dāng)S=0,k=1時,不滿足輸出條件,故進(jìn)行循環(huán),執(zhí)行完循環(huán)體后,S=1,k=2, 當(dāng)S=1,k=2時,不滿足輸出條件,故進(jìn)行循環(huán),執(zhí)行完循環(huán)體后,S=6,k=3,
當(dāng)S=6,k=9時,不滿足輸出條件,故進(jìn)行循環(huán),執(zhí)行完循環(huán)體后,S=21,k=4,
當(dāng)S=21,k=4時,不滿足輸出條件,故進(jìn)行循環(huán),執(zhí)行完循環(huán)體后,S=58,k=5,
當(dāng)S=58,k=5時,滿足輸出條件,
故判斷框中應(yīng)填入的條件為k≤4,
故選:B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解程序框圖的相關(guān)知識,掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在長方體ABCD﹣A1B1C1D1中,AB=BC=4,AA1=2,則直線BC1與平面BB1D1D所成角的正弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為響應(yīng)國家節(jié)能減排建設(shè)的號召,喚起人們從自己身邊的小事做起,開展了以“再小的力量也是一種支持”為主題的宣傳教育活動,其中有兩則公益廣告: ①80部手機(jī),一年就會增加一噸二氧化氮的排放.
②人們在享受汽車帶了的便捷舒適的同時,卻不得不呼吸汽車排放的尾氣.
活動組織者為了解是市民對這兩則廣告的宣傳效果,隨機(jī)對10﹣60歲的人群抽查了n人,并就兩個問題對選取的市民進(jìn)行提問,其抽樣人數(shù)頻率分布直方圖如圖所示,宣傳效果調(diào)查結(jié)果如表所示.
宣傳效果調(diào)查表
廣告一 | 廣告二 | |||
回答正 | 占本組 | 回答正 | 占本組 | |
[10,20) | 90 | 0.5 | 45 | a |
[20,30) | 225 | 0.75 | k | 0.8 |
[30,40) | b | 0.9 | 252 | 0.6 |
[40,50) | 160 | c | 120 | d |
[50,60] | 10 | e | f | g |
(1)分別寫出n,a,b,c,d的值.
(2)若將表中的頻率近似看作各年齡組正確回答廣告內(nèi)容的概率,規(guī)定正確回答廣告一的內(nèi)容得30元,廣告二的內(nèi)容得60元.組織者隨機(jī)請一家庭的兩成員(大人45歲,孩子17歲),指定大人回答廣告一的內(nèi)容,孩子回答廣告二的內(nèi)容,求該家庭獲得獎金數(shù)ξ的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,李先生家住H小區(qū),他工作在C科技園區(qū),從家開車到公司上班路上有L1、L2兩條路線,L1路線上有A1、A2、A3三個路口,各路口遇到紅燈的概率均為 ;L2路線上有B1、B2兩個路口,各路口遇到紅燈的概率依次為 , .
(1)若走L1路線,求最多遇到1次紅燈的概率;
(2)若走L2路線,求遇到紅燈次數(shù)X的數(shù)學(xué)期望;
(3)按照“平均遇到紅燈次數(shù)最少”的要求,請你幫助李先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)= (a∈R)在點(diǎn)(1,f(1))處的切線與直線2x+y+1=0垂直.
(1)若對于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求實(shí)數(shù)m的取值范圍;
(2)設(shè)函數(shù)g(x)=(x+1)f(x)﹣b(x﹣1)在[1,e]上有且只有一個零點(diǎn),求實(shí)數(shù)b取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠A,∠B,∠C所對的邊分別是a,b,c,M為BC的中點(diǎn),BM=MC=2,AM=b﹣c,則△ABC面積最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,面積為 的△ACB是等腰直角三角形且∠ACB=90°,C1B⊥面ABC,C1B=3.
(1)若AB的中點(diǎn)為S,證明:CS⊥C1A.
(2)設(shè) ,是否存在實(shí)數(shù)λ,使得直線TB與平面ACC1A1的夾角為 ?若存在,求出λ的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx,則“b<0”是“f(f(x))的最小值與f(x)的最小值相等”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com