1.橢圓C經(jīng)過(1,1)與($\frac{\sqrt{6}}{2}$,$\frac{\sqrt{3}}{2}$)兩點(diǎn),求橢圓C的標(biāo)準(zhǔn)方程.

分析 設(shè)橢圓方程mx2+ny2=1(m>0,n>0,m≠n),代點(diǎn)可得m和n的方程組,解方程組可得.

解答 解:設(shè)橢圓方程mx2+ny2=1(m>0,n>0,m≠n),
則有$\left\{\begin{array}{l}{m+n=1}\\{\frac{3}{2}m+\frac{3}{4}n=1}\end{array}\right.$,∴m=$\frac{1}{3}$,n=$\frac{2}{3}$,
所求橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{\frac{3}{2}}$=1.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程的求解,設(shè)方程為mx2+ny2=1(m>0,n>0,m≠n),可避免分類討論,是解決問題的關(guān)鍵,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知sin(π+α)=$\frac{3}{5}$,則cos(α-2π)=$±\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{m}^{2}}$+y2=1,(m>0),直線l不過原點(diǎn)且不行于坐標(biāo)軸,與橢圓C有兩個(gè)交點(diǎn)P,Q,線段的中點(diǎn)為M,若直線l的斜率與OM的斜率的乘積為-$\frac{1}{2}$
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l過橢圓的右焦點(diǎn),橢圓C的上頂點(diǎn)為A,設(shè)直線AP,AQ分別交直線x-y-2=0于點(diǎn)S,T,求當(dāng)|ST|最小時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.給出下列關(guān)于橢圓的真命題,試類比推理給出雙曲線中類似的命題,并畫出命題中的圖.
(1)橢圓中以焦半徑為直徑的圓與長(zhǎng)軸為直徑的圓相切(此圓與橢圓內(nèi)切);
(2)橢圓互相垂直的焦點(diǎn)弦倒數(shù)之和為常數(shù)$\frac{1}{|AB|}$+$\frac{1}{|CD|}$=$\frac{2-{e}^{2}}{2ep}$;
(3)設(shè)橢圓焦點(diǎn)弦AB的中垂線交長(zhǎng)軸于點(diǎn)D,則|DF|與|AB|之比為離心率的一半(F為焦點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.山腳平地上有一條筆直的公路,在公路上A,B,C三點(diǎn)依次測(cè)得山頂P的仰角為30°,45°,60°,已知AB=BC=1km,求山高PH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)α、β為互不重合的平面,m、n為互不重合的直線,下列四個(gè)命題中所有正確命題的序號(hào)是①④.
①若m⊥α,n?α,則m⊥n;
②若m?α,n?α,m∥β,n∥β,則α∥β.
③若m∥α,n∥α,則m∥n.
④若α⊥β,α∩β=m,n?α,n⊥m,則n⊥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知F1,F(xiàn)2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),若點(diǎn)P在橢圓上,且$\overrightarrow{P{F}_{1}}$ $•\overrightarrow{P{F}_{2}}$=0,則橢圓離心率的取值范圍是$[\frac{\sqrt{2}}{2},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{{2}^{x}{-2}^{-x}}{{2}^{x}+{2}^{-x}}$;
(1)判斷并證明f(x)的奇偶性;
(2)求不等式$\frac{3}{5}$≤f(x)$≤\frac{15}{17}$的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)x,y,z均為正實(shí)數(shù),且3x=4y=6z
(1)若z=1,求(x-1)(2y-1)的值;
(2)求證:$\frac{1}{z}-\frac{1}{x}=\frac{1}{2y}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案