分析 根據(jù)有關(guān)定理中的諸多條件,對(duì)每一個(gè)命題進(jìn)行逐一進(jìn)行是否符合定理?xiàng)l件去判定,不正確的只需取出反例即可.
解答 解:①若m⊥α,n?α,利用線面垂直的性質(zhì),可得m⊥n,正確;
②若m?α,n?α,m∥β,n∥β,則α∥β;兩條相交直線才行,不正確.
③m∥α,n∥α,則m與n可能平行、相交、異面,不正確.
④若α⊥β,α∩β=m,n?α,n⊥m,則由面面垂直的性質(zhì)定理我們易得到n⊥β,正確.
故答案為:①④.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是平面與平面垂直的判定,直線與平面平行的判定,直線與平面垂直的判定,熟練掌握這些定理及定義,熟練掌握空間線面關(guān)系的幾何特征是解答此類問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | φ=$\frac{π}{2}$+2kπ(k∈Z) | B. | φ=$\frac{π}{2}$+kπ(k∈Z) | C. | $\frac{φ}{ω}$=$\frac{π}{2}$+2kπ(k∈Z) | D. | $\frac{φ}{ω}$=$\frac{π}{2}$+kπ(k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\sqrt{2}$ | B. | $\sqrt{2}$ | C. | 1 | D. | -1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com