8.已知P(x,y)為區(qū)域$\left\{\begin{array}{l}{{y}^{2}-4{x}^{2}≤0}\\{0≤x≤a}\end{array}\right.$內(nèi)的任意一點(diǎn),當(dāng)該區(qū)域的面積為2時(shí),z=x+2y的最大值是5.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域.根據(jù)三角形的面積求出a的值,利用數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:不等式組等價(jià)為$\left\{\begin{array}{l}{(y-2x)(y+2x)≤0}\\{0≤x≤a}\end{array}\right.$,
 即$\left\{\begin{array}{l}{y-2x≥0}\\{y+2x≤0}\\{0≤x≤a}\end{array}\right.$ 或$\left\{\begin{array}{l}{y-2x≤0}\\{y+2x≥0}\\{0≤x≤a}\end{array}\right.$,

則A(a,-2a),B(a,2a),
由S△OAB=$\frac{1}{2}$•4a•a=2,得a=1.
∴B(1,2),
由z=x+2y得y=$-\frac{1}{2}$x+$\frac{z}{2}$,
∴當(dāng)y=$-\frac{1}{2}$x+$\frac{z}{2}$過(guò)B點(diǎn)時(shí),z最大,z=1+2×2=5.
故答案為:5

點(diǎn)評(píng) 本題主要考查線(xiàn)性規(guī)劃的基本應(yīng)用,利用z的幾何意義是解決線(xiàn)性規(guī)劃問(wèn)題的關(guān)鍵,注意利用數(shù)形結(jié)合來(lái)解決.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.將邊長(zhǎng)為2的正方形ABCD沿對(duì)角線(xiàn)AC折起,使得BD=2,則三棱錐D-ABC的頂點(diǎn)D到底面ABC的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)復(fù)數(shù)z=i(1+i)(i為虛數(shù)單位),則復(fù)數(shù)z的實(shí)部為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-1,2),則$\overrightarrow{a}$-2$\overrightarrow$的模等于$\sqrt{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知x和y是實(shí)數(shù),i是虛數(shù)單位,(1+i)x+yi=(1+3i)i,則|x+yi|等于(  )
A.$\sqrt{5}$B.5C.$\sqrt{11}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知θ∈(π,2π),$\overrightarrow{a}$=(1,2),$\overrightarrow$=(cosθ,sinθ),若$\overrightarrow{a}$∥$\overrightarrow$,則cosθ的值為( 。
A.$\frac{\sqrt{5}}{5}$B.±$\frac{2\sqrt{5}}{5}$C.-$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知向量$\vec a$與$\overrightarrow b$的夾角為$\frac{2π}{3}$,$|{\overrightarrow a}|=2$,|$\overrightarrow$|=3,記$\vec m=3\vec a-2\vec b$,$\vec n=2\vec a+k\vec b$
(I) 若$\vec m⊥\vec n$,求實(shí)數(shù)k的值;
(II) 當(dāng)$k=-\frac{4}{3}$時(shí),求向量$\vec m$與$\vec n$的夾角θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在四棱錐P-ABCD中,底面ABCD為矩形,側(cè)棱PA⊥底面ABCD,AB=$\sqrt{3}$,BC=PA=1,E為PD的中點(diǎn),點(diǎn)N在面PAC內(nèi),且NE⊥平面PAC,則點(diǎn)N到AB的距離為$\frac{\sqrt{10-4\sqrt{3}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列函數(shù)中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.$y=\frac{1}{x}$B.y=2|x|C.$y=ln\frac{1}{|x|}$D.y=x3

查看答案和解析>>

同步練習(xí)冊(cè)答案