A. | $\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | 3 | D. | 4 |
分析 由圓的方程找出圓心與半徑,判斷得到(3,1)在圓內(nèi),過(guò)此點(diǎn)最短的弦即為與過(guò)此點(diǎn)直徑垂直的弦,利用垂徑定理及勾股定理即可求出.
解答 解:由圓的標(biāo)準(zhǔn)方程得圓心(2,2),半徑r=2,
∵$\sqrt{({3-2)}^{2}+({1-2)}^{2}}$=$\sqrt{2}$<2,∴(3,1)在圓內(nèi),
∵圓心到此點(diǎn)的距離d=$\sqrt{2}$,r=2,
∴最短的弦長(zhǎng)為2$\sqrt{{r}^{2}-z6yhaiw^{2}}$=2$\sqrt{2}$.
故選:B.
點(diǎn)評(píng) 本題主要考查直線和圓相交的弦長(zhǎng)的計(jì)算,涉及的知識(shí)有:圓的標(biāo)準(zhǔn)方程,點(diǎn)與圓的位置關(guān)系,垂徑定理,以及勾股定理,找出最短弦是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0<e<$\frac{1}{5}$ | B. | $\frac{1}{5}$<e<$\frac{1}{3}$ | C. | $\frac{1}{3}$<e<1 | D. | 0<e<$\frac{1}{5}$或$\frac{1}{3}$<e<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
學(xué)生 | A1 | A2 | A3 | A4 | A5 |
語(yǔ)文(x分) | 89 | 91 | 93 | 95 | 97 |
英語(yǔ)(y分) | 87 | 89 | 89 | 92 | 93 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com