分析 ①當(dāng)b>0時,把函數(shù)f(x)=|x|x+bx+c分x≥0和x<0兩種情況討論,轉(zhuǎn)化為二次函數(shù)求單調(diào)性;
②當(dāng)b<0時,函數(shù)f(x)在R上有最小值,可以根據(jù)函數(shù)的對稱性加以判斷;
③函數(shù)f(x)的圖象關(guān)于點(0,c)對稱,可以根據(jù)函數(shù)圖象的平移解決;
④方程f(x)=0可能有三個實數(shù)根,對b,c去特殊值.
解答 解:①當(dāng)b>0時,f(x)=|x|x+bx+c=$\left\{\begin{array}{l}{{x}^{2}+bx+c,x≥0}\\{-{x}^{2}+bx+c,x<0}\end{array}\right.$,知函數(shù)f(x)在R上是單調(diào)增函數(shù);
②當(dāng)b<0時,f(x)=|x|x+bx+c=$\left\{\begin{array}{l}{{x}^{2}+bx+c,x≥0}\\{-{x}^{2}+bx+c,x<0}\end{array}\right.$,值域是R,故函數(shù)f(x)在R上沒有最小值;
③若f(x)=|x|x+bx那么函數(shù)f(x)是奇函數(shù)(f(-x)=-f(x)),也就是說函數(shù)f(x)的圖象關(guān)于(0,0)對稱.而函數(shù)f(x)=|x|x+bx+c的圖象是由函數(shù)f(x)=|x|x+bx的圖象沿Y軸移動,故圖象一定是關(guān)于(0,c)對稱的.
④令b=-2,c=0,則f(x)=|x|x-2x=0,解得x=0,2,-2.所以正確.
故答案為:①③④.
點評 此題考查了分段函數(shù)的單調(diào)性、對稱性和最值問題,對于含有絕對值的一類問題,通常采取去絕對值的方法解決,體現(xiàn)了分類討論的數(shù)學(xué)思想;函數(shù)的對稱性問題一般轉(zhuǎn)化為函數(shù)的奇偶性加以分析,再根據(jù)函數(shù)圖象的平移解決,體現(xiàn)了轉(zhuǎn)化、運動的數(shù)學(xué)思想;對于存在性的命題研究,一般通過特殊值法來解決.是好題,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (8,+∞) | B. | [8,+∞) | C. | (-∞,8) | D. | (-∞,8] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com