A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 ①由于m>0時,函數(shù)f(x)=x2+x-m,△=1+4m>0,即可判斷出結(jié)論;
②由于E,F(xiàn),G,H是空間四點,命題甲:E,F(xiàn),G,H四點不共面,可得:直線EF和GH不相交,反之不成立,因為可能EF∥GH.即可判斷出正誤;
③由于對任意的實數(shù)x,|x+1|+|x-1|≥2,即可判斷出結(jié)論;
④方程mx2+(m-1)y2=1表示雙曲線,則m(m-1)<0,解出即可判斷出結(jié)論.
解答 解:①若m>0,則函數(shù)f(x)=x2+x-m,△=1+4m>0,因此函數(shù)f(x)一定有零點,正確;
②由于E,F(xiàn),G,H是空間四點,命題甲:E,F(xiàn),G,H四點不共面,⇒命題乙:直線EF和GH不相交,反之不成立,可能EF∥GH.因此甲是乙成立的充分不必要條件,故不正確;
③∵對任意的實數(shù)x,|x+1|+|x-1|≥|x+1-(x-1)|=2,∴“a<2”是“對任意的實數(shù)x,|x+1|+|x-1|≥a恒成立”的充分不必要條件,不正確;
④方程mx2+(m-1)y2=1表示雙曲線,則m(m-1)<0,解得0<m<1,因此“0<m<1“是“方程mx2+(m-1)y2=1表示雙曲線”的充分必要條件,正確.
其中正確命題的個數(shù)為2.
故選:B.
點評 本題考查了簡易邏輯的判定方法、空間位置關(guān)系、函數(shù)的性質(zhì)、雙曲線的標(biāo)準(zhǔn)方程、絕對值不等式的性質(zhì)等,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 1 | C. | -1 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com