13.已知tan(α+β)=$\frac{2}{3}$,tan(β-$\frac{π}{4}$)=$\frac{1}{2}$,則tan(α+$\frac{π}{4}$)=(  )
A.$\frac{1}{8}$B.$\frac{1}{2}$C.$\frac{3}{2}$D.$\frac{1}{6}$

分析 由條件利用兩角和差的正切公式求得tanβ的值,可得tan(α+$\frac{π}{4}$)=tan[(α+β)-(β-$\frac{π}{4}$)]的值.

解答 解:tan(α+$\frac{π}{4}$)=tan[(α+β)-(β-$\frac{π}{4}$)]=$\frac{tan(α+β)-tan(β-\frac{π}{4})}{1+tan(α+β)tan(β-\frac{π}{4})}$=$\frac{\frac{2}{3}-\frac{1}{2}}{1+\frac{2}{3}×\frac{1}{2}}$=$\frac{1}{8}$.
故選:A.

點(diǎn)評(píng) 本題主要考查兩角和差的正切公式的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖1所示,直角梯形ABCD中,∠BCD=90°,AD∥BC,AD=8,BC=CD=4,過(guò)B作BE⊥AD于E,P是線段DE上的一個(gè)動(dòng)點(diǎn),將△ABE沿BE向上折起,使AC=4$\sqrt{3}$,連結(jié)PA、PC、AC(如圖2).
(Ⅰ)若點(diǎn)P、Q分別為DE和AC的中點(diǎn),求證:PQ∥平面ABE;
(Ⅱ)若平面AEB和平面APC所成的銳二面角的余弦值為$\frac{\sqrt{6}}{3}$,求PE的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.若以直角坐標(biāo)系xOy的O為極點(diǎn),Ox為極軸,選擇相同的長(zhǎng)度單位建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程是ρ=$\frac{6cosθ}{si{n}^{2}θ}$.
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并指出曲線是什么曲線;
(2)若直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{3}{2}+\frac{t}{2}\\ y=\frac{{\sqrt{3}t}}{2}\end{array}\right.$(t為參數(shù)),當(dāng)直線l與曲線C相交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax.
(1)當(dāng)a=1時(shí),求f(x)在[1,4]上的最大值和最小值.
(2)若f (x)在($\frac{2}{3}$,+∞)上存在單調(diào)遞增區(qū)間,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知點(diǎn)P(2,-3),Q(3,2),直線ax+y+2=0與線段PQ相交,則實(shí)數(shù)a的取值范圍是( 。
A.-$\frac{4}{3}$<a<$\frac{1}{2}$B.-$\frac{4}{3}$≤a≤$\frac{1}{2}$C.a>$\frac{1}{2}$或a<-$\frac{4}{3}$D.a≥$\frac{1}{2}$或a≤-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)f(x)=sin(x+$\frac{5π}{2}$)cos(x-$\frac{π}{2}$)-cos2(x+$\frac{π}{4}}$).
(1)求f(x)的單調(diào)區(qū)間;
(2)在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f($\frac{A}{2}}$)=$\frac{{\sqrt{3}-1}}{2}$,a=1,求△ABC周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在數(shù)列{an}中,a1=1,an+1-an=2,則a50的值為( 。
A.99B.98C.97D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c(a<b<c),已知2acosC+2ccosA=a+c.
(1)若3c=5a,求$\frac{sinA}{sinB}$的值;
(2)若2csinA-$\sqrt{3}$a=0,且c-a=8,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)a>0,b>0,若$\sqrt{5}$是5a與5b的等比中項(xiàng),則$\frac{1}{a}$+$\frac{1}$的最小值為( 。
A.8B.4C.1D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案