【題目】某市舉行“中學(xué)生詩(shī)詞大賽”,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績(jī)大于90分的具有復(fù)賽資格.某校有800 名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間內(nèi),其頻率分布直方圖如圖所示

(Ⅰ)求初賽分?jǐn)?shù)在區(qū)間內(nèi)的頻率;

(Ⅱ)求獲得復(fù)賽資格的人數(shù);

(Ⅲ)據(jù)此直方圖估算學(xué)生初賽成績(jī)的平均數(shù).

【答案】(Ⅰ) 0.3(Ⅱ)520(Ⅲ)97分.

【解析】

(Ⅰ)由頻率分布直方圖的矩形面積和為1即可得解;

(Ⅱ)先計(jì)算成績(jī)大于90的矩形面積,即為頻率,再乘以總數(shù)即可得解;

(Ⅲ)由每一個(gè)矩形的面積乘以中點(diǎn)橫坐標(biāo)求和即可得平均數(shù).

(Ⅰ)由題意知之間的頻率為: ;

(Ⅱ),獲得復(fù)賽資格的人數(shù)為人.

(Ⅲ)

所以學(xué)生初賽成績(jī)的平均數(shù)約為97分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某果農(nóng)選取一片山地種植紅柚,收獲時(shí),該果農(nóng)隨機(jī)選取果樹20株作為樣本測(cè)量它們每一株的果實(shí)產(chǎn)量(單位:kg),獲得的所有數(shù)據(jù)按照區(qū)間(40,45],(45,50],(50,55],(55,60]進(jìn)行分組,得到頻率分布直方圖如圖.已知樣本中產(chǎn)量在區(qū)間(45,50]上的果樹株數(shù)是產(chǎn)量在區(qū)間(50,60]上的果樹株數(shù)的倍.

(1)求、的值;

(2)求樣本的平均數(shù);

(3)從樣本中產(chǎn)量在區(qū)間(50,60]上的果樹里隨機(jī)抽取兩株,求產(chǎn)量在區(qū)間(55,60]上的果樹至少有一株被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為, 為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)當(dāng)時(shí),求曲線上的點(diǎn)到直線的距離的最大值;

(2)若曲線上的所有點(diǎn)都在直線的下方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù).

1)求a的值,并證明R上的增函數(shù);

2)若關(guān)于t的不等式f(t22t)f(2t2k)0的解集非空,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面有五個(gè)命題

函數(shù)的最小正周期是;

終邊在y軸上的角的集合是

在同一坐標(biāo)系中,函數(shù)的圖象和函數(shù)的圖象有一個(gè)公共點(diǎn);

把函數(shù);

中,若,則是等腰三角形;

其中真命題的序號(hào)是( )

A.(1)(2)(3) B.(2)(3)(4

C.(3)(4)(5) D.(1)(4)(5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓)的左頂點(diǎn),左焦點(diǎn)是線段的中點(diǎn),拋物線的準(zhǔn)線恰好過點(diǎn)

(1)求橢圓的方程;

(2)如圖所示,過點(diǎn)作斜率為的直線交橢圓于點(diǎn),交軸于點(diǎn),若為線段的中點(diǎn),過作與直線垂直的直線,證明對(duì)于任意的),直線過定點(diǎn),并求出此定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中, , ,以為直徑的圓記為圓,圓過原點(diǎn)的切線記為,若以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

(1)求圓的極坐標(biāo)方程;

(2)若過點(diǎn),且與直線垂直的直線與圓交于, 兩點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著共享單車的成功運(yùn)營(yíng),更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨機(jī)抽取人對(duì)共享產(chǎn)品對(duì)共享產(chǎn)品是否對(duì)日常生活有益進(jìn)行了問卷調(diào)查,并對(duì)參與調(diào)查的人中的性別以及意見進(jìn)行了分類,得到的數(shù)據(jù)如下表所示:

(Ⅰ)根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)的概率不超過的前提下,認(rèn)為對(duì)共享產(chǎn)品的態(tài)度與性別有關(guān)系?

Ⅱ)現(xiàn)按照分層抽樣從認(rèn)為共享產(chǎn)品增多對(duì)生活無益的人員中隨機(jī)抽取人,再?gòu)?/span>人中隨機(jī)抽取人贈(zèng)送超市購(gòu)物券作為答謝,求恰有人是女性的概率.

參考公式 .

臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是定義在上的奇函數(shù),對(duì),均有,已知當(dāng)時(shí), ,則下列結(jié)論正確的是( )

A. 的圖象關(guān)于對(duì)稱 B. 有最大值1

C. 上有5個(gè)零點(diǎn) D. 當(dāng)時(shí),

查看答案和解析>>

同步練習(xí)冊(cè)答案