【題目】已知是橢圓)的左頂點(diǎn),左焦點(diǎn)是線段的中點(diǎn),拋物線的準(zhǔn)線恰好過(guò)點(diǎn)

(1)求橢圓的方程;

(2)如圖所示,過(guò)點(diǎn)作斜率為的直線交橢圓于點(diǎn),交軸于點(diǎn),若為線段的中點(diǎn),過(guò)作與直線垂直的直線,證明對(duì)于任意的),直線過(guò)定點(diǎn),并求出此定點(diǎn)坐標(biāo).

【答案】12

【解析】試題分析:(1)由拋物線的準(zhǔn)線恰好過(guò)點(diǎn),可得,再由左焦點(diǎn)是線段的中點(diǎn),可得,結(jié)合即可求出橢圓的方程;(2)設(shè)直線的方程為,與橢圓的方程聯(lián)立,消去得關(guān)于的一元二次方程,結(jié)合韋達(dá)定理及點(diǎn)坐標(biāo),可表示出的坐標(biāo),則可得,從而得到直線的斜率,根據(jù)直線的方程即可得直線的方程,從而得出定點(diǎn).

試題解析:(1)依題意得拋物線的準(zhǔn)線為,所以恰好過(guò)點(diǎn)

∴左頂點(diǎn)為,

∴橢圓的方程為

2)直線的方程為,與橢圓的方程聯(lián)立,消去

設(shè),則

為線段的中點(diǎn)

的坐標(biāo)為,

),

所以直線的斜率為,

又直線的方程為,令,得,

∴直線的方程為,即直線,

∴直線過(guò)定點(diǎn),此定點(diǎn)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn)M(﹣2,﹣1),離心率為.過(guò)點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與橢圓C交于異于M的另外兩點(diǎn)P、Q.

(Ⅰ)求橢圓C的方程;

(Ⅱ)試判斷直線PQ的斜率是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,直線相切于點(diǎn).

(1)求橢圓的方程;

(2)若直線與橢圓交于不同的兩點(diǎn),,與直線相交于,,均不重合).證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市每年春節(jié)前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴(yán)重.該市環(huán)保研究所對(duì)近年春節(jié)前后每天的空氣污染情況調(diào)查研究后發(fā)現(xiàn),每天空氣污染的指數(shù)隨時(shí)刻(時(shí))變化的規(guī)律滿足表達(dá)式,,其中為空氣治理調(diào)節(jié)參數(shù),且

1)令,求的取值范圍;

2)若規(guī)定每天中的最大值作為當(dāng)天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過(guò)5,試求調(diào)節(jié)參數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市舉行“中學(xué)生詩(shī)詞大賽”,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績(jī)大于90分的具有復(fù)賽資格.某校有800 名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間內(nèi),其頻率分布直方圖如圖所示

(Ⅰ)求初賽分?jǐn)?shù)在區(qū)間內(nèi)的頻率;

(Ⅱ)求獲得復(fù)賽資格的人數(shù);

(Ⅲ)據(jù)此直方圖估算學(xué)生初賽成績(jī)的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)又本l:m+3x-m+2y+m=0與圓C:x-32y-42=9.

1求證:無(wú)論m為何值,直線l總過(guò)定點(diǎn)A,并說(shuō)明直線l與圓C總相交.

2m為何值時(shí),直線l被圓C所截得的弦長(zhǎng)最。空(qǐng)求出該最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),離心率等于,它的一個(gè)短軸端點(diǎn)恰好是拋物線的焦點(diǎn).

(1)求橢圓的方程;

(2)已知、是橢圓上的兩點(diǎn),是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn).

①若直線的斜率為,求四邊形面積的最大值;

②當(dāng)運(yùn)動(dòng)時(shí),滿足,試問(wèn)直線的斜率是否為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,,分別是棱,的中點(diǎn),點(diǎn)棱上,且,.

(1)求證:平面

(2)當(dāng)時(shí),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱, 平面 , .

1)證明:平面平面;

2)若四棱柱的體積為,求該三棱柱的側(cè)面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案