A. | $-\frac{15}{4}$ | B. | $-\frac{{\sqrt{15}}}{2}$ | C. | $\frac{15}{4}$ | D. | $\frac{{\sqrt{15}}}{2}$ |
分析 由題意可得三角形是以角A為直角的直角三角形,解直角三角形求出相應(yīng)的邊和角,代入數(shù)量積公式得答案.
解答 解:三角形ABC外接圓O的半徑為1(O為圓心),2$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$=0,
∴O為BC的中點(diǎn),故△ABC是直角三角形,∠A為直角.
又|$\overrightarrow{OA}$|=2|$\overrightarrow{AB}$|,
∴|$\overrightarrow{AB}$|=$\frac{1}{2}$,|$\overrightarrow{BC}$|=2,
∴|$\overrightarrow{AC}$|=$\frac{\sqrt{15}}{2}$,
∴cosC=$\frac{A{C}^{2}+O{C}^{2}-O{A}^{2}}{2•AC•OC}$=$\frac{\frac{15}{4}}{2×\frac{\sqrt{15}}{2}×1}$=$\frac{\sqrt{15}}{2}$,
∴$\overrightarrow{CA}$•$\overrightarrow{BC}$=-$\overrightarrow{AC}$•$\overrightarrow{BC}$=-$\frac{\sqrt{15}}{2}$×2×$\frac{\sqrt{15}}{2}$=-$\frac{15}{4}$
故選:A
點(diǎn)評 本題考查平面向量的數(shù)量積運(yùn)算,考查直角三角形中的邊角關(guān)系,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $-\frac{3}{4}$ | C. | 0 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{12}{25}$ | B. | $\frac{24}{25}$ | C. | $\frac{12}{25}$或$-\frac{12}{25}$ | D. | $\frac{24}{25}$或-$\frac{24}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k=-6 | B. | k=2 | C. | k=6 | D. | k=-2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com