分析 (1)由甲大棚投入50萬元,則乙大投棚入150萬元,把a(bǔ)的值代入即可得出.
(2)$f(x)=80+4\sqrt{2x}+\frac{1}{4}({200-x})+120=-\frac{1}{4}x+4\sqrt{2x}+250$,依題意得$\left\{\begin{array}{l}x≥20\\ 200-x≥20\end{array}\right.⇒20≤x≤180$,通過換元利用二次函數(shù)的單調(diào)性即可得出.
解答 解:(1)∵甲大棚投入50萬元,則乙大投棚入150萬元,
∴$f({50})=80+4\sqrt{2×50}+\frac{1}{4}×150+120=277.5$萬元.
(2)$f(x)=80+4\sqrt{2x}+\frac{1}{4}({200-x})+120=-\frac{1}{4}x+4\sqrt{2x}+250$,依題意得$\left\{\begin{array}{l}x≥20\\ 200-x≥20\end{array}\right.⇒20≤x≤180$,
故$f(x)=-\frac{1}{4}x+4\sqrt{2x}+250({20≤x≤180})$.
令$t=\sqrt{x}∈[{2\sqrt{5},6\sqrt{5}}]$,則$f(x)=-\frac{1}{4}{t^2}+4\sqrt{2}t+250=-\frac{1}{4}{({t-8\sqrt{2}})^2}+282$,
當(dāng)$t=8\sqrt{2}$,即x=128時(shí),f(x)max=282萬元.
所以投入甲大棚128萬元,乙大棚72萬元時(shí),總收益最大,且最大收益為282萬元.
點(diǎn)評 本題考查了函數(shù)的應(yīng)用、二次函數(shù)的單調(diào)性,考查了換元方法、推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,1) | B. | (-∞,-1)∪(1,+∞) | C. | (-∞,-1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $-\frac{3}{4}$ | C. | $\frac{4}{3}$ | D. | $-\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $a=\sqrt{3},b=1$ | |
B. | 不等式f(x1)f(x2)≤4取到等號時(shí)|x1-x2|的最小值為2π | |
C. | 函數(shù)f(x)的圖象一個(gè)對稱中心為 $({\frac{2}{3}π,0})$ | |
D. | 函數(shù)f(x)在區(qū)間$[{\frac{π}{6},π}]$上單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{15}{4}$ | B. | $-\frac{{\sqrt{15}}}{2}$ | C. | $\frac{15}{4}$ | D. | $\frac{{\sqrt{15}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M=N | B. | M∩N={3} | C. | M∪N={0} | D. | M∩N=∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com