16.根據(jù)下列條件分別寫出直線的方程化為一般式方程:
(1)斜率為0,在y軸上的截距為2;
(2)經(jīng)過A(-2,1),B(1,0)兩點.

分析 (1)寫出斜截式方程,再化為一般式方程;(2)寫出兩點式方程,再化為一般式方程.

解答 解:(1)直線的斜截式方程為y=2.化為一般式方程為y-2=0.
(2)直線的兩點式方程為$\frac{y-0}{1-0}=\frac{x-1}{-2-1}$,化為一般式方程為x+3y-1=0.

點評 本題考查了直線與方程,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.已知2sinα=1+cosα,則tan$\frac{α}{2}$=$±\frac{1}{2}$或無解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知直線y=x-2與圓x2+y2=4交于兩點M和N,O是坐標原點,則$\overrightarrow{OM}$$•\overrightarrow{ON}$=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.下列程序運行后,輸出的前4個數(shù)的和是25.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=sin2xcos2x+cos22x,則函數(shù)f(x)的最大值為$\frac{\sqrt{2}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知實數(shù)1,m,4構成一個等比數(shù)列,則圓錐曲線$\frac{{x}^{2}}{m}$+y2=1的離心率為(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{3}$C.$\frac{\sqrt{2}}{2}$或$\sqrt{3}$D.$\frac{\sqrt{2}}{2}$或$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知不等式ax2+bx+2>0的解集為{x|-1<x<2},求不等式2x2+bx+a≤0的解集[-1,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知F1是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點,點B的坐標為(0,b),直線F1B與雙曲線C的兩條漸近線分別交于P,Q兩點,若4$\overrightarrow{P{F}_{1}}$=$\overrightarrow{QP}$,則雙曲線C的離心率為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知tanα=2,則sin2($\frac{π}{2}$+α)-sin(3π+α)cos(2π-α)=$\frac{3}{5}$.

查看答案和解析>>

同步練習冊答案