14.將函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向右平移$\frac{π}{12}$個單位后的圖象關于y軸對稱,則函數(shù)f(x)在[0,$\frac{π}{2}$]上的最小值為-$\frac{\sqrt{3}}{2}$.

分析 利用誘導公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得f(x)的解析式,再根據(jù)正弦函數(shù)的定義域和值域,求得函數(shù)f(x)在[0,$\frac{π}{2}$]上的最小值.

解答 解:將函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向右平移$\frac{π}{12}$個單位后,可得y=sin(2x-$\frac{π}{6}$+φ)的圖象.
再根據(jù)所得圖象關于y軸對稱,可得-$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,求得φ=kπ+$\frac{2π}{3}$,k∈Z,故取φ=-$\frac{π}{3}$,f(x)=sin(2x-$\frac{π}{3}$).
∵x∈[0,$\frac{π}{2}$],∴2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],∴f(x)=sin(2x-$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,1],
則函數(shù)f(x)在[0,$\frac{π}{2}$]上的最小值為-$\frac{\sqrt{3}}{2}$,
故答案為:-$\frac{\sqrt{3}}{2}$.

點評 本題主要考查誘導公式的應用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的定義域和值域,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.等差數(shù)列{an}的前n項和為Sn,a22-3a7=2,且$\frac{1}{a_2}$,$\sqrt{{S_2}-3}$,S3成等比數(shù)列,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)令bn=$\frac{2}{{{a_n}{a_{n+2}}}}$,數(shù)列{bn}的前n項和為Tn,若對于任意的n∈N*,都有8Tn<2λ2+5λ成立,求實
數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知點A(1,2)和圓C:(x-a)2+(y+a)2=2a2,試分別求滿足下列條件的實數(shù)a的取值范圍:
(1)點A在圓的內(nèi)部;(2)點A在圓上;(3)點A在圓的外部.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知點A(-8,-6),B(-3,-1),C(5,a)三點共線,則a=7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,設圓內(nèi)接四邊形ABCD的邊BC為圓的直徑,其余三邊為a、b、c,求證:這個圓的直徑是方程x3-(a2+b2+c2)x-2abc=0的根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.公差不為0的等差數(shù)列{an}的部分項an1,a${\;}_{{n}_{2}}$,a${\;}_{{n}_{3}}$,…構(gòu)成等比數(shù)列{a${\;}_{{n}_{k}}$},且n2=2,n3=6,n4=22,則下列項中是數(shù)列{a${\;}_{{n}_{k}}$}中的項是( 。
A.a46B.a89C.a342D.a387

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知復數(shù)z=1+cosα+isinα(π<α<2π),則|$\overline{z}$|=( 。
A.2cos$\frac{α}{2}$B.-2cos$\frac{α}{2}$C.2sin$\frac{α}{2}$D.-2sin$\frac{α}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知底面為正三角形的直三棱柱內(nèi)接于半徑為1的球,當三棱柱的體積最大時,三棱柱的高為$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若曲線f(x)=$\frac{aelnx}{x}$在點(1,f(1))處的切線過點(0,-2e),則函數(shù)y=f(x)的極值為( 。
A.1B.2C.3D.e

查看答案和解析>>

同步練習冊答案