5.已知點A(1,2)和圓C:(x-a)2+(y+a)2=2a2,試分別求滿足下列條件的實數(shù)a的取值范圍:
(1)點A在圓的內(nèi)部;(2)點A在圓上;(3)點A在圓的外部.

分析 利用點與圓的位置關(guān)系,建立方程與不等式,即可求出實數(shù)a的取值范圍.

解答 解:(1)A在圓的內(nèi)部,(1-a)2+(2+a)2<2a2,且a不為0,解得a<-2.5;
(2)點A在圓上,(1-a)2+(2+a)2=2a2,解得a=-2.5;
(3)點A在圓的外部,(1-a)2+(2+a)2>2a2,且a不為0,解得a>-2.5且a≠0.

點評 本題考查點與圓的位置關(guān)系,考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,角A,B,C的對邊分別是a,b,c,已知向量$\overrightarrow{m}$=(cosB,cosC),$\overrightarrow{n}$=(4a-b,c),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求cosC的值;
(2)若c=$\sqrt{3}$,△ABC的面積S=$\frac{{\sqrt{15}}}{4}$,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項和為Sn,a1=2,對任意的n∈N*都有an+1=3an+3n+1-2n,記bn=$\frac{{{a_n}-{2^n}}}{3^n}$(n∈N*).
(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)求Sn;
(3)證明:存在k∈N*,使得$\frac{{{a_{n+1}}}}{a_n}$≤$\frac{{{a_{k+1}}}}{a_k}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.2013年底某市有人口100萬,人均占有綠地面積為9.8m2,計劃五年內(nèi)(到2018年底)人均綠地面積增加15%,如該市在此期間,每年人口平均增長率為17‰,則該市每年平均要新增綠地面積多少?(結(jié)果精確到0.01萬m2)(人均綠地面積=$\frac{綠地總面積}{人口總數(shù)}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)雙曲線的實半軸的長為3,一個焦點坐標是($\sqrt{13}$,0),則雙曲線的標準方程是( 。
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1C.-$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1D.-$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和為Sn,且Sn=2an-2(n=1,2,3,…),數(shù)列{bn}中,b1=1,點P(bn,bn+1)在直線x-y+2=0上.(1)求數(shù)列{an},{bn}的通項a,b;
(2)若Tn為數(shù)列{bn}的前n項和,證明:當n≥2時,2Sn>Tn+3n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.要得到函數(shù)y=4sin(x+$\frac{π}{6}$)cos(x+$\frac{π}{6}$)圖象,只需把函數(shù)y=2sin2x的圖象( 。
A.向左平移$\frac{π}{3}$個單位B.向左平移$\frac{π}{6}$個單位
C.向右平移$\frac{π}{3}$個單位D.向右平移$\frac{π}{6}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.將函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向右平移$\frac{π}{12}$個單位后的圖象關(guān)于y軸對稱,則函數(shù)f(x)在[0,$\frac{π}{2}$]上的最小值為-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)設(shè)x>-1,求函數(shù)y=x+$\frac{4}{x+1}$+6的最小值;
(2)求函數(shù)y=$\frac{x^2+8}{x-1}$(x>1)的最值.

查看答案和解析>>

同步練習(xí)冊答案