14.若函數(shù)y=$\frac{m•{3}^{x}-1}{m•{3}^{x}+1}$的定義域?yàn)镽,則實(shí)數(shù)m的取值范圍是[0,+∞).

分析 結(jié)合題意得到關(guān)于m的不等式,解出即可.

解答 解:由題意得:
?x∈R,m•3x+1≠0,
故m≠0時,3x≠-$\frac{1}{m}$,
∴-$\frac{1}{m}$<0,解得:m>0,
m=0時,符合題意,
故答案為:[0,+∞).

點(diǎn)評 本題考查了求函數(shù)的定義域問題,考查指數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}的前n項(xiàng)和Sn=n2-4n+1,數(shù)列{an}的通項(xiàng)公式${a}_{n}=\left\{\begin{array}{l}{-2,n=1}\\{2n-1,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.“a>1”是“函數(shù)f(x)=x2-2ax在x∈(-∞,1)為減函數(shù)”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=|3x-1|+ax+3,a∈R.
(1)若a=1,解不等式f(x)≤4;
(2)若函數(shù)f(x)有最小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知直線l1∥l2,A是l1,l2之間的一定點(diǎn),并且A點(diǎn)到l1,l2的距離分別為1,2,B是直線l2上一動點(diǎn),作AC⊥AB且使AC與直線l1交于點(diǎn)C,則△ABC的面積最小值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知曲線C:y=$\sqrt{4-{x^2}}$(-2≤x≤0)與函數(shù)f(x)=loga(-x)及函數(shù)g(x)=a-x(a>1)的圖象分別交于A(x1,y1),B(x2,y2)兩點(diǎn),則x12+x22的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},
(1)若m=4,求A∪B;
(2)若B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知正四棱錐V-ABCD中,AC與BD交于點(diǎn)M,VM是棱錐的高,若AC=6cm,VC=5cm.
(1)求正四棱錐V-ABCD的體積;
(2)求直線VD與底面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.$\vec a$,$\vec b$是兩個向量,$|{\vec a}|=1$,$|{\vec b}|=2$,且$({\vec a+\vec b})⊥\vec a$,則$\vec a$,$\vec b$的夾角為120°.

查看答案和解析>>

同步練習(xí)冊答案