1.若x,y滿足約束條件$\left\{{\begin{array}{l}{x-1≥0}\\{x-y<0}\\{x+y-4≤0}\end{array}}\right.$則$\frac{x+2y}{2x+y}$的取值范圍為(  )
A.$[1,\frac{7}{5}]$B.$(1,\frac{7}{5}]$C.[1,2]D.(1,2]

分析 畫出約束條件的可行域,化簡所求表達式,利用表達式的幾何意義,求解即可.

解答 解:x,y滿足約束條件$\left\{{\begin{array}{l}{x-1≥0}\\{x-y<0}\\{x+y-4≤0}\end{array}}\right.$的可行域如圖:
則$\frac{x+2y}{2x+y}$=$\frac{x+\frac{1}{2}y+\frac{3}{2}y}{2x+y}$=$\frac{1}{2}$+$\frac{3}{4\frac{x}{y}+2}$.

由可行域可知:$\frac{y}{x}$∈[1,kOA],由$\left\{\begin{array}{l}{x-1=0}\\{x+y-4=0}\end{array}\right.$,可得A(1,3),
kOA=3,
$\frac{4x}{y}$∈$[\frac{4}{3},4]$,$\frac{4x}{y}$+2∈$[\frac{10}{3},6]$,
$\frac{3}{4\frac{x}{y}+2}$∈$[\frac{1}{2},\frac{9}{10}]$,
則$\frac{x+2y}{2x+y}$∈[1,$\frac{7}{5}$].
故選:A.

點評 本題考查了利用線性規(guī)劃求目標函數(shù)的值域,一般分兩步進行:
1、根據(jù)不等式組,作出不等式組表示的平面區(qū)域;
2、由目標函數(shù)的特點及幾何意義,利用數(shù)形結合思想,轉化為圖形之間的關系問題求解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=2$\sqrt{3}$sinxsin($\frac{π}{2}$-x)+2cos2x+a的最大值為3.
(Ⅰ)求f(x)的對稱軸方程和a的值;
(Ⅱ)試討論函數(shù)f(x)在區(qū)間[-$\frac{π}{3}$,$\frac{π}{3}$]上的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.(1+2x+$\frac{1}{{x}^{2}}$)5的展開式中常數(shù)項為121.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知回歸直線方程為$\hat y=\hat bx+\hat a$,樣本點的中心為$(\overline x,\overline y)$,若回歸直線的斜率估計值為2,且$\sum_{i=1}^{10}{{x_i}=30}$,$\sum_{i=1}^{10}{{y_i}=50}$,則回歸直線方程為(  )
A.$\hat y=2x-3$B.$\hat y=2x-4$C.$\hat y=2x-1$D.$\hat y=2x+2$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且$(sinA+sinB)(b-a)=sinC(\sqrt{3}b-c)$.
(Ⅰ)求角A的大;
(Ⅱ) 若a=2,△ABC的面積為$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.定義集合A?B={x|x∈A或x∈B且x∉A∩B},設全集U={x|1<x<10},集合A={x|2<x<6},B={x|5<x<7},則(∁UA)?B=( 。
A.[6,7)B.(1,2]∪(5,6)∪[7,10)C.(1,6)D.(1,2]∪(5,6]∪(7,10)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知正方形ABCD中,點A(2,1),C(6,-3).若將點A折起,使其與邊BC的中點E重合,則該折線所在直線方程為x-2y-5=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.給出下面4個關系式中①0?{0,1};②0∈{0,1};③{0}?{0,1};④{0}⊆{0,1},其中正確的有( 。
A.①②B.②③C.③④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在△ABC中,若已知A=60°,C=45°和a=2,則此三角形的最小邊長為$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

同步練習冊答案