【題目】某知名品牌汽車深受消費者喜愛,但價格昂貴.某汽車經(jīng)銷商推出A、B、C三種分期付款方式銷售該品牌汽車,并對近期100位采用上述分期付款的客戶進行統(tǒng)計分析,得到如下的柱狀圖.已知從A、B、C三種分期付款銷售中,該經(jīng)銷商每銷售此品牌汽車1倆所獲得的利潤分別是1萬元,2萬元,3萬元.現(xiàn)甲乙兩人從該汽車經(jīng)銷商處,采用上述分期付款方式各購買此品牌汽車一輛.以這100位客戶所采用的分期付款方式的頻率代替1位客戶采用相應(yīng)分期付款方式的概率.
(1)求甲乙兩人采用不同分期付款方式的概率;
(2)記X(單位:萬元)為該汽車經(jīng)銷商從甲乙兩人購車中所獲得的利潤,求X的分布列與期望.

【答案】
(1)解:由題意得:

P(A)= =0.35,P(B)= =0.45,P(C)= =0.2,

∴甲乙兩人采用不同分期付款方式的概率:

p=1﹣[P(A)P(A)+P(B)P(B)+P(C)P(C)]=0.635


(2)解:記X(單位:萬元)為該汽車經(jīng)銷商從甲乙兩人購車中所獲得的利潤,

則X的可能取值為2,3,4,5,6,

P(X=2)=P(A)P(A)=0.35×0.35=0.1225,

P(X=3)=P(A)P(B)+P(B)P(A)=0.35×0.45+0.45×0.35=0.315,

P(X=4)=P(A)P(C)+P(B)P(B)+P(C)P(A)=0.35×0.2+0.45×0.45+0.2×0.35=0.3425,

P(X=5)=P(B)P(C)+P(C)P(B)=0.45×0.2+0.2×0.45=0.18,

P(X=6)=P(C)P(C)=0.2×0.2=0.04.

∴X的分布列為:

X

2

3

4

5

6

P

0.1225

0.315

0.3425

0.18

0.04

E(X)=0.1225×2+0.315×3+0.3425×4+0.18×5+0.04×6=3.7


【解析】(1)由題意得:P(A)= =0.35,P(B)= =0.45,P(C)= =0.2,利用對立事件概率計算公式能求出甲乙兩人采用不同分期付款方式的概率.(2)記X(單位:萬元)為該汽車經(jīng)銷商從甲乙兩人購車中所獲得的利潤,則X的可能取值為2,3,4,5,6,分別求出相應(yīng)的概率,由此能求出X的分布列和E(X).
【考點精析】掌握頻率分布直方圖和離散型隨機變量及其分布列是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,ABCD,EF分別為線段AD,PA的中點.

求證:平面平面BEF

求證:平面PAC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10)

某單位建造一間地面面積為12m2的背面靠墻的矩形小房,由于地理位置的限制,房子側(cè)面的長度x不得超過米,房屋正面的造價為400/m2,房屋側(cè)面的造價為150/m2,屋頂和地面的造價費用合計為5800元,如果墻高為3m,且不計房屋背面的費用.

1)把房屋總造價表示成的函數(shù),并寫出該函數(shù)的定義域.

2)當側(cè)面的長度為多少時,總造價最底?最低總造價是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)探究函數(shù)上的單調(diào)性;

(2)若關(guān)于的不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知D= ,給出下列四個命題: P1(x,y)∈D,x+y+1≥0;
P2(x,y)∈D,2x﹣y+2≤0;
P3(x,y)∈D, ≤﹣4;
P4(x,y)∈D,x2+y2≤2.
其中真命題的是(
A.P1 , P2
B.P2 , P3
C.P2 , P4
D.P3 , P4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2lnx+ax﹣ (a∈R)在x=2處的切線經(jīng)過點(﹣4,ln2)
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若不等式 >mx﹣1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,設(shè)

2,3,4,5,2,3,4,5,,分別求S的值;

若集合A中所有元素之和為55,求S的最小值;

若集合A中所有元素之和為103,求S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)“精確扶貧”號召,某企業(yè)計劃每年用不超過100萬元的資金購買單價分別為1500元/箱和3000元/箱的A、B兩種藥品捐獻給貧困地區(qū)某醫(yī)院,其中A藥品至少100箱,B藥品箱數(shù)不少于A藥品箱數(shù).則該企業(yè)捐獻給醫(yī)院的兩種藥品總箱數(shù)最多可為(
A.200
B.350
C.400
D.500

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1)[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

)求直方圖中a的值;

)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案