10.(1+tan21°)(1+tan24°)的值為2.

分析 由tan45°=tan(21°+24°)利用兩角和的正切函數(shù)公式化簡得到tan21°+tan24°=1-tan21°tan24°,把原式化簡后,代入即可求出.

解答 解:∵tan45°=tan(21°+24°)=$\frac{tan21°+tan24°}{1-tan21°tan24°}$=1,
∴得到tan21°+tan24°=1-tan21°tan24°,
∴(1+tan21°)(1+tan24°)
=(1+tan24°+tan21°+tan24°tan21°)
=(1+1-tan24°tan21°+tan24°tan21°)
=2.
故答案為:2.

點評 此題的突破點是角度的變化即利用45°=21°+24°化簡求值,要求學生會靈活運用兩角和與差的正切函數(shù)公式化簡求值,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知全集為U=R,集合M={x|x2-2x-3≤0},N={y|y=x2+1},則M∩(∁UN)為( 。
A.[1,3]B.[-1,1]C.[-1,1)D.(1,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.下列關系式中一定成立的是(  )
A.若a>0,b>0,則a4+b4≤a3b+ab3B.$\sqrt{7}$+$\sqrt{5}$>2$\sqrt{6}$
C.若|a|<1,|b|<1,則|$\frac{a+b}{1+ab}$|<1D.a2+b2+c2≤ab+bc+ac

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.數(shù)列{an}各項均為正數(shù),且對任意n∈N*,滿足an+1=an+ca${\;}_{n}^{2}$(c>0為常數(shù)).
(1)求證:對任意正數(shù)M,存在N∈N*,當n>N時有an>M;
(2)設bn=$\frac{1}{1+c{a}_{n}}$,Sn是{bn}前n項和,求證:對任意d>0,存在N∈N*,當n>N時有0<|Sn-$\frac{1}{c{a}_{1}}$|<d.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.從集合M={1,2,3,4}中任取三個元素組成三位數(shù).記組成三位數(shù)的三個數(shù)字中偶數(shù)個數(shù)為ζ,則ζ的數(shù)學期望為(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.將點的直角坐標(2,2)化成極坐標得( 。
A.(2$\sqrt{2}$,$\frac{2π}{3}}$)B.(-4,$\frac{2π}{3}}$)C.(-4,$\frac{π}{3}}$)D.(2$\sqrt{2}$,$\frac{π}{4}}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.線段x-2y+1=0(-1≤x≤3)的垂直平分線方程為2x-y-1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知f(x)是定義在(0,+∞)上的函數(shù),且對任意正數(shù)x,y都滿足f(x+y)=f(x)f(y),且當x>1時,f(x)>2,f(2)=4.則f(x2)>2f(x+1)的解為{x|x>2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.因發(fā)生交通事故,一輛貨車上的某種液體潰漏到一池塘中,為了治污,根據(jù)環(huán)保部門的建議,現(xiàn)決定在池塘中投放一種與污染液體發(fā)生化學反應的藥劑,已知每投放a(1≤a≤4,a∈R)個單位的藥劑,它在水中釋放的濃度y(克/升)隨著時間x(天)變化的函數(shù)關系式近似為y=a•f(x),其中f(x)=$\left\{{\begin{array}{l}{\frac{16}{8-x}-1({0≤x≤4})}\\{5-\frac{1}{2}x({4<x≤10})}\end{array}}$.若多次投放,則某一時刻水中的藥劑濃度為各次投放的藥劑在相應時刻所釋放的濃度之和.根據(jù)經(jīng)驗,當水中藥劑的濃度不低于(克/升)時,它才能起到有效治污的作用.
(1)若一次投放4個單位的藥劑,則有效治污時間可達幾天?
(2)若第一次投放2個單位的藥劑,6天后再投放a個單位的藥劑,要使接下來的4天中能夠持續(xù)有效治污,試求a的最小值.

查看答案和解析>>

同步練習冊答案