15.將點(diǎn)的直角坐標(biāo)(2,2)化成極坐標(biāo)得( 。
A.(2$\sqrt{2}$,$\frac{2π}{3}}$)B.(-4,$\frac{2π}{3}}$)C.(-4,$\frac{π}{3}}$)D.(2$\sqrt{2}$,$\frac{π}{4}}$)

分析 求出點(diǎn)與坐標(biāo)原點(diǎn)的距離,以及夾角,然后求解極坐標(biāo)即可.

解答 解:點(diǎn)的直角坐標(biāo)(2,2),可得極徑為:2$\sqrt{2}$,極角為:$\frac{π}{4}$.
將點(diǎn)的直角坐標(biāo)(2,2)化成極坐標(biāo)得:(2$\sqrt{2}$,$\frac{π}{4}$).
故選:D.

點(diǎn)評(píng) 本題考查極坐標(biāo)與直角坐標(biāo)的互化,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=(x2-ax)ex+1,x∈R
(1)求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(-1,1)單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.(x-1)4-4x(x-1)3+6x2(x-1)2-4x3(x-1)•x4=( 。
A.-1B.1C.(2x-1)4D.(1-2x)5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知a1=19,an+1=an-3,數(shù)列{an}的前n項(xiàng)和為Sn,則當(dāng)Sn取最大值時(shí),n的值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.(1+tan21°)(1+tan24°)的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=|cosx|sinx,給出下列四個(gè)說法:
①函數(shù)f(x)的周期為π;
②若|f(x1)|=|f(x2)|,則x1=x2+kπ,k∈Z;
③f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}}$]上單調(diào)遞增;
④f(x)的圖象關(guān)于點(diǎn)(-$\frac{π}{2}$,0)中心對(duì)稱.
其中正確說法的個(gè)數(shù)是( 。
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)關(guān)于x不等式x2+n2-x<3nx-n2-n(n∈N*)的解集中整數(shù)的個(gè)數(shù)為an,數(shù)列{${\frac{{2{a_n}+1}}{2^n}}\right.$}的前n項(xiàng)和為Dn,則滿足條件?n∈N*,Dn<t的常數(shù)t的最小整數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.直線y=k(x-1)與圓x2+y2-2y-2=0的位置關(guān)系是(  )
A.相交B.相切C.相離D.以上皆有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)f(x)=$\left\{\begin{array}{l}{(b-\frac{3}{2})x+b-1(x>0)}\\{-{x}^{2}+(2-b)x(x≤0)}\end{array}\right.$在R上為增函數(shù),則實(shí)數(shù)b的取值范圍是($\frac{3}{2}$,2].

查看答案和解析>>

同步練習(xí)冊(cè)答案