7.已知a=${2}^{\frac{4}{3}}$,b=${3}^{\frac{2}{3}}$,c=${25}^{\frac{1}{3}}$,則(  )
A.b<a<cB.a<b<cC.b<c<aD.c<a<b

分析 b=${4}^{\frac{2}{3}}$=${2}^{\frac{4}{3}}$,c=${25}^{\frac{1}{3}}$=${5}^{\frac{2}{3}}$,結(jié)合冪函數(shù)的單調(diào)性,可比較a,b,c,進(jìn)而得到答案.

解答 解:∵a=${2}^{\frac{4}{3}}$=${4}^{\frac{2}{3}}$,
b=${3}^{\frac{2}{3}}$,
c=${25}^{\frac{1}{3}}$=${5}^{\frac{2}{3}}$,
綜上可得:b<a<c,
故選A

點評 本題考查的知識點是指數(shù)函數(shù)的單調(diào)性,冪函數(shù)的單調(diào)性,是函數(shù)圖象和性質(zhì)的綜合應(yīng)用,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.從2,3,8,9中任取兩個不同的數(shù)字,分別記為a,b,則logab為整數(shù)的概率是$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若{an}是等差數(shù)列,若a1+a10=21,S10=105.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}中,a1=-2,an+1=2an+1(n∈N*),則an=-2n-1-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知θ的終邊過點P(4a,-3a),且sinθ=$\frac{3}{5}$,則tanθ=$-\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=sinx-$\sqrt{3}$cosx的圖象可由函數(shù)y=sinx+$\sqrt{3}$cosx的圖象至少向右平移$\frac{2π}{3}$個單位長度得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)z=$\frac{3+2i}{i}$,其中i為虛數(shù)單位,則Imz=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)x>0,y>0.且2x-3=($\frac{1}{2}$)y,則$\frac{1}{x}$+$\frac{4}{y}$的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)不等式組$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y+1≥0}\\{λx-y-λ≤0}\end{array}\right.$(λ>1)在平面上表示的區(qū)域為D
(1)當(dāng)λ=2時,在坐標(biāo)平面內(nèi)畫出區(qū)域D,并求區(qū)域為D的外接圓的標(biāo)準(zhǔn)方程;
(2)設(shè)區(qū)域為D的面積為S,求S的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案