16.設(shè)x>0,y>0.且2x-3=($\frac{1}{2}$)y,則$\frac{1}{x}$+$\frac{4}{y}$的最小值為3.

分析 2x-3=($\frac{1}{2}$)y,可得x+y=3.再利用“乘1法”與基本不等式的性質(zhì)即可得出.

解答 解:∵2x-3=($\frac{1}{2}$)y,∴x-3=-y,即x+y=3.
又x>0,y>0.
則$\frac{1}{x}$+$\frac{4}{y}$=$\frac{1}{3}(x+y)$$(\frac{1}{x}+\frac{4}{y})$=$\frac{1}{3}(5+\frac{y}{x}+\frac{4x}{y})$$≥\frac{1}{3}$$(5+2\sqrt{\frac{y}{x}•\frac{4x}{y}})$=3,當(dāng)且僅當(dāng)y=2x=2時取等號.
∴$\frac{1}{x}$+$\frac{4}{y}$的最小值為3.
故答案為:3.

點評 本題考查了“乘1法”與基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)拋物線$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t為參數(shù),p>0)的焦點為F,準(zhǔn)線為l,過拋物線上一點A作l的垂線,垂足為B,設(shè)C($\frac{7}{2}$p,0),AF與BC相交于點E.若|CF|=2|AF|,且△ACE的面積為3$\sqrt{2}$,則p的值為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a=${2}^{\frac{4}{3}}$,b=${3}^{\frac{2}{3}}$,c=${25}^{\frac{1}{3}}$,則( 。
A.b<a<cB.a<b<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)a>0,b>0,若關(guān)于x,y的方程組$\left\{\begin{array}{l}{ax+y=1}\\{x+by=1}\end{array}\right.$無解,則a+b的取值范圍為(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.時鐘從6時走到9時,時針旋轉(zhuǎn)了$-\frac{π}{2}$弧度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示:
(1)求函數(shù)f(x)的解析式;
(3)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若f(A)=1,a=$\sqrt{3}$,b=1,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知實數(shù)u、v滿足不等式組$\left\{\begin{array}{l}{3u+2v-12≥0}\\{9u-4v+36≥0}\\{u-4≤0}\end{array}\right.$,則z=$\sqrt{\frac{{u}^{2}}{4}+\frac{{v}^{2}}{9}}$的最小值等于( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=lnx-x+1.
(1)討論f(x)的單調(diào)性;
(2)證明當(dāng)x∈(1,+∞)時,1<$\frac{x-1}{lnx}$<x;
(3)設(shè)c>1,證明當(dāng)x∈(0,1)時,1+(c-1)x>cx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.一個口袋內(nèi)有大小相同的4個白球,3個黑球,從中任意摸出三個球,其中只有一個白球的概率是$\frac{12}{35}$.

查看答案和解析>>

同步練習(xí)冊答案