參考數(shù)據(jù):0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(3)該銷售網(wǎng)點(diǎn)已經(jīng)售賣該款盲盒6周.并記錄了銷售情況.如下表:周數(shù)123456盒數(shù)16 232526">
【題目】盲盒里面通常裝的是動漫、影視作品的周邊,或者設(shè)計(jì)師單獨(dú)設(shè)計(jì)出來的玩偶.由于盒子上沒有標(biāo)注,購買者只有打開才會知道自己買到了什么,因此這種驚喜吸引了眾多年輕人,形成了“盲盒經(jīng)濟(jì)”.某款盲盒內(nèi)可能裝有某一套玩偶的、、三種樣式,且每個盲盒只裝一個.
(1)若每個盲盒裝有、、三種樣式玩偶的概率相同.某同學(xué)已經(jīng)有了樣式的玩偶,若他再購買兩個這款盲盒,恰好能收集齊這三種樣式的概率是多少?
(2)某銷售網(wǎng)點(diǎn)為調(diào)查該款盲盒的受歡迎程度,隨機(jī)發(fā)放了200份問卷,并全部收回.經(jīng)統(tǒng)計(jì),有的人購買了該款盲盒,在這些購買者當(dāng)中,女生占;而在未購買者當(dāng)中,男生女生各占.請根據(jù)以上信息填寫下表,并分析是否有的把握認(rèn)為購買該款盲盒與性別有關(guān)?
女生 | 男生 | 總計(jì) | |
購買 | |||
未購買 | |||
總計(jì) |
參考公式:,其中.
span>參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(3)該銷售網(wǎng)點(diǎn)已經(jīng)售賣該款盲盒6周,并記錄了銷售情況,如下表:
周數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
盒數(shù) | 16 | ______ | 23 | 25 | 26 |
由于電腦故障,第二周數(shù)據(jù)現(xiàn)已丟失,該銷售網(wǎng)點(diǎn)負(fù)責(zé)人決定用第4、5、6周的數(shù)據(jù)求線性回歸方程,再用第1、3周數(shù)據(jù)進(jìn)行檢驗(yàn).
①請用4、5、6周的數(shù)據(jù)求出關(guān)于的線性回歸方程;
(注:,)
②若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2盒,則認(rèn)為得到的線性回歸方程是可靠的,試問①中所得的線性回歸方程是否可靠?
【答案】(1);(2)填表見解析,有把握認(rèn)為“購買該款盲盒與性別有關(guān)”;(3)①;②可靠.
【解析】
(1)列舉出基本事件的總數(shù)和事件“他恰好能收集齊這三種樣式”所包含的基本事件的個數(shù),利用古典概型的概率計(jì)算公式,即可求解.
(2)根據(jù)題意,得出的列聯(lián)表,利用公式求得的值,結(jié)合附表,即可得到結(jié)論;
(3)①求得的值,根據(jù)公式求得的值,求得回歸直線方程;②當(dāng)和時,比較即可得到結(jié)論.
(1)由題意,基本事件空間為
,其中基本事件的個數(shù)為9個,
設(shè)事件為:“他恰好能收集齊這三種樣式”,則,
其中基本事件的個數(shù)為2,
所以他恰好能收集齊這三種樣式的概率.
(2)
女生 | 男生 | 總計(jì) | |
購買 | 40 | 20 | 60 |
未購買 | 70 | 70 | 140 |
總計(jì) | 110 | 90 | 200 |
則.
又因?yàn)?/span>,故有把握認(rèn)為“購買該款盲盒與性別有關(guān)”.
(3)①由數(shù)據(jù),求得,.
由公式求得,
.
所以關(guān)于的線性回歸方程為.
②當(dāng)時,,;
同樣,當(dāng)時,,.
所以,所得到的線性回歸方程是可靠的.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若,當(dāng)x∈[0,1]時,f(x)=x,若在區(qū)間(﹣1,1]內(nèi),有兩個零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了各級城市的大街小巷,為了解我市的市民對共享單車的滿意度,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了50人進(jìn)行分析.若得分低于60分,說明不滿意,若得分不低于60分,說明滿意,調(diào)查滿意度得分情況結(jié)果用莖葉圖表示如圖1.
(Ⅰ)根據(jù)莖葉圖找出40歲以上網(wǎng)友中滿意度得分的眾數(shù)和中位數(shù);
(Ⅱ)根據(jù)莖葉圖完成下面列聯(lián)表,并根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為滿意度與年齡有關(guān);
滿意 | 不滿意 | 合計(jì) | |
40歲以下 | |||
40歲以上 | |||
合計(jì) |
(Ⅲ)先采用分層抽樣的方法從40歲及以下的網(wǎng)友中選取7人,再從這7人中隨機(jī)選出2人,將頻率視為概率,求選出的2人中至少有1人是不滿意的概率.
參考格式:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】輥?zhàn)邮强图覀鹘y(tǒng)農(nóng)具,南方農(nóng)民犁開田地后,仍有大的土塊.農(nóng)人便用六片葉齒組成輥軸,兩側(cè)裝上木板,人跨開兩腳站立,既能掌握平衡,又能增加重量,讓牛拉動輥軸前進(jìn),壓碎土塊,以利于耕種.這六片葉齒又對應(yīng)著菩薩六度,即布施持戒忍辱精進(jìn)禪定與般若.若甲乙每人依次有放回地從這六片葉齒中隨機(jī)取一片,則這兩人選的葉齒對應(yīng)的“度”相同的概率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,點(diǎn)是線段上的動點(diǎn),則下列說法正確的是______(填序號)
①無論點(diǎn)在上怎么移動,都有;
②無論點(diǎn)在上怎么移動,異面直線與所成角都不可能是;
③當(dāng)點(diǎn)移動至中點(diǎn)時,直線與平面所成角最大;
④當(dāng)點(diǎn)移動至中點(diǎn)時,才有與相交于一點(diǎn),記為點(diǎn),且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),,其中常數(shù).
(1)若函數(shù)與有相同的極值點(diǎn),求的值;
(2)若,判斷函數(shù)與圖象的交點(diǎn)個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】多面體中,△為等邊三角形,△為等腰直角三角形,平面,平面.
(1)求證:;
(2)若,,求平面與平面所成的較小的二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過坐標(biāo)原點(diǎn)O且與圓相交于點(diǎn)A,B,圓M過點(diǎn)A,B且與直線相切.
(1)求圓心M的軌跡C的方程;
(2)若圓心在x軸正半軸上面積等于的圓W與曲線C有且僅有1個公共點(diǎn).
(ⅰ)求出圓W標(biāo)準(zhǔn)方程;
(ⅱ)已知斜率等于的直線,交曲線C于E,F兩點(diǎn),交圓W于P,Q兩點(diǎn),求的最小值及此時直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com