【題目】若,當(dāng)x∈[0,1]時,f(x)=x,若在區(qū)間(﹣1,1]內(nèi),
有兩個零點(diǎn),則實數(shù)m的取值范圍是( )
A.B.
C.
D.
【答案】B
【解析】
根據(jù)當(dāng)x∈[0,1]時,f(x)=x,當(dāng)x∈(﹣1,0)時,x+1∈(0,1),得到f(x),故f(x)
,題目問題轉(zhuǎn)化為函數(shù)y=f(x)與函數(shù)y=m(x
)在區(qū)間(﹣1,1]內(nèi)有兩個交點(diǎn),在同一坐標(biāo)系內(nèi)畫出兩個函數(shù)的圖象,根據(jù)圖象,利用數(shù)形結(jié)合法即可求出m的取值范圍.
根據(jù)題意,,又當(dāng)x∈[0,1]時,f(x)=x,
故當(dāng)x∈(﹣1,0)時,x+1∈(0,1),則f(x)+1,
所以f(x),
故f(x),
因為在區(qū)間(﹣1,1]內(nèi)有兩個零點(diǎn),
所以方程f(x)=m(x)在區(qū)間(﹣1,1]內(nèi)有兩個根,
所以函數(shù)y=f(x)與函數(shù)y=m(x)在區(qū)間(﹣1,1]內(nèi)有兩個交點(diǎn),
而函數(shù)y=m(x)恒過定點(diǎn)(
,0),在同一坐標(biāo)系內(nèi)畫出兩個函數(shù)的圖象,如圖所示:
,
當(dāng)y=m(x)過點(diǎn)(1,1)時,斜率m
,
當(dāng)y=m(x)過點(diǎn)(1,0)時,斜率m=0,
由圖象可知,當(dāng)0<m時,兩個函數(shù)圖象有兩個交點(diǎn),
即有兩個零點(diǎn),
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的離心率為
,且橢圓上一點(diǎn)
的坐標(biāo)為
.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓
交于
,
兩點(diǎn),且以線段
為直徑的圓過橢圓的右頂點(diǎn)
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是圓
上任意一點(diǎn),過點(diǎn)
作
軸于點(diǎn)
,延長
到點(diǎn)
,使
.
(1)求點(diǎn)M的軌跡E的方程;
(2)過點(diǎn)作圓O的切線l,交(1)中曲線E于
兩點(diǎn),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動直線與橢圓
交于
、
兩個不同點(diǎn),且
的面積
,其中
為坐標(biāo)原點(diǎn).
(1)證明和
均為定值;
(2)設(shè)線段的中點(diǎn)為
,求
的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù),
),以
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的直角坐標(biāo)方程及直線
在
軸正半軸及
軸正半軸截距相等時的直角坐標(biāo)方程;
(2)若,設(shè)直線
與曲線
交于不同的兩點(diǎn)
、
,點(diǎn)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在定義域內(nèi)有兩個不同的極值點(diǎn).
(1)求的取值范圍;
(2)設(shè)兩個極值點(diǎn)分別為:,
,證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),則下列判斷正確的是( )
A.函數(shù)的最小正周期為
,在
上單調(diào)遞增
B.函數(shù)的最小正周期為
,在
上單調(diào)遞增
C.函數(shù)的最小正周期為
,在
上單調(diào)遞增
D.函數(shù)的最小正周期為
,在
上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱中,
平面ABCD,四邊形ABCD為平行四邊形,
,
.
(1)若,求證:
//平面
;
(2)若,且三棱錐
的體積為
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】盲盒里面通常裝的是動漫、影視作品的周邊,或者設(shè)計師單獨(dú)設(shè)計出來的玩偶.由于盒子上沒有標(biāo)注,購買者只有打開才會知道自己買到了什么,因此這種驚喜吸引了眾多年輕人,形成了“盲盒經(jīng)濟(jì)”.某款盲盒內(nèi)可能裝有某一套玩偶的、
、
三種樣式,且每個盲盒只裝一個.
(1)若每個盲盒裝有、
、
三種樣式玩偶的概率相同.某同學(xué)已經(jīng)有了
樣式的玩偶,若他再購買兩個這款盲盒,恰好能收集齊這三種樣式的概率是多少?
(2)某銷售網(wǎng)點(diǎn)為調(diào)查該款盲盒的受歡迎程度,隨機(jī)發(fā)放了200份問卷,并全部收回.經(jīng)統(tǒng)計,有的人購買了該款盲盒,在這些購買者當(dāng)中,女生占
;而在未購買者當(dāng)中,男生女生各占
.請根據(jù)以上信息填寫下表,并分析是否有
的把握認(rèn)為購買該款盲盒與性別有關(guān)?
女生 | 男生 | 總計 | |
購買 | |||
未購買 | |||
總計 |
參考公式:,其中
.
span>參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(3)該銷售網(wǎng)點(diǎn)已經(jīng)售賣該款盲盒6周,并記錄了銷售情況,如下表:
周數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
盒數(shù) | 16 | ______ | 23 | 25 | 26 30 |
由于電腦故障,第二周數(shù)據(jù)現(xiàn)已丟失,該銷售網(wǎng)點(diǎn)負(fù)責(zé)人決定用第4、5、6周的數(shù)據(jù)求線性回歸方程,再用第1、3周數(shù)據(jù)進(jìn)行檢驗.
①請用4、5、6周的數(shù)據(jù)求出關(guān)于
的線性回歸方程
;
(注:,
)
②若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2盒,則認(rèn)為得到的線性回歸方程是可靠的,試問①中所得的線性回歸方程是否可靠?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com