對(duì)于某一自變量為x的函數(shù),若當(dāng)x=x0時(shí),其函數(shù)值也為x0,則稱點(diǎn)(x0,x0)為此函數(shù)的不動(dòng)點(diǎn),現(xiàn)有二次函數(shù)y=x2+bx+c.
(1)若b=2,c=0,求函數(shù)y=x2+bx+c的不動(dòng)點(diǎn)坐標(biāo);
(2)若函數(shù)y=x2+bx+c圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱的不動(dòng)點(diǎn)A(x1,y1)、B(x2,y2),(x1>x2),該圖象與y軸交于C點(diǎn),且△ABC是以AC為直角邊的直角三角形,求點(diǎn)C的坐標(biāo).
考點(diǎn):二次函數(shù)的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意,令y=x2+2x=x;解x即可;
(2)令y=x2+bx+c=x;從而確定b-1=0;c<0;從而求出點(diǎn)A(
-c
-c
),B(-
-c
,-
-c
);點(diǎn)C(0,c);再由△ABC是以AC為直角邊的直角三角形利用勾股定理求解即可.
解答: 解:(1)由題意,令y=x2+2x=x;
解得x=0或x=-1;
故函數(shù)y=x2+2x的不動(dòng)點(diǎn)坐標(biāo)為(0,0),(-1,-1);
(2)由題意,令y=x2+bx+c=x;
則x2+(b-1)x+c=0;
則由函數(shù)y=x2+bx+c圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱的不動(dòng)點(diǎn)A(x1,y1)、B(x2,y2),(x1>x2)知,
b-1=0;c<0;
y1=x1=
-c
,y2=x2=-
-c
,
故點(diǎn)A(
-c
-c
),B(-
-c
,-
-c
);點(diǎn)C(0,c);
故由△ABC是以AC為直角邊的直角三角形知,
BC2+AC2=AB2,
則(-
-c
2+(c+
-c
2+(
-c
2+(c-
-c
2=(2
-c
2+(2
-c
2;
即-c+2c2-2c-c=-8c;
故c=-2.
故點(diǎn)C(0,-2).
點(diǎn)評(píng):本題考查了二次函數(shù)的化簡與應(yīng)用,同時(shí)考查了學(xué)生對(duì)新定義的接受與應(yīng)用能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

x|x|
16
+
y|y|
9
=-1
的曲線即為函y=f(x)的圖象,對(duì)于函數(shù)y=f(x),有如下結(jié)論:
①x在R上單調(diào)遞減;
②函數(shù)F(x)=4f(x)+3x不存在零點(diǎn);
③函數(shù)y=f(x)的值域是R;
④若函數(shù)g(x)和f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,則函數(shù)y=g(x)的圖象就是方程
y|y|
16
+
x|x|
9
=1
確定的曲線.
其中所有正確的命題序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
ax
1+ax
(a>0a≠1),其中[m]表示不超過m的最大整數(shù),如[4.1]=4,則函數(shù)y=[f(x)-
1
2
]+[f(-x)-
1
2
]的值域是( 。
A、{0,1}
B、{-1,1}
C、{-1,0}
D、{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)定點(diǎn)坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點(diǎn)任意一點(diǎn)到兩定點(diǎn)的距離之差的絕對(duì)值等于2
5

(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點(diǎn),求△ABF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中真命題的個(gè)數(shù)是(  )
①空間中的任何一個(gè)向量都可用
a
、
b
、
c
表示;
②空間中的任何一個(gè)向量都可以用基向量
a
、
b
、
c
表示;
③空間中的任何一個(gè)向量都可用不共面的三個(gè)向量表示;
④平面內(nèi)的任何一個(gè)向量都可以用平面內(nèi)的兩個(gè)向量表示.
A、4個(gè)B、3個(gè)C、2個(gè)D、1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=(2x-1)2在x=3處的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα-cosα=
1
2
,則sinα+cosα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵數(shù).乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中以X表示.

(Ⅰ)如果X=8,求乙組同學(xué)植樹棵樹的平均數(shù)和方差;
(Ⅱ)如果X=7,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹總棵數(shù)為17的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=cos2(x+
π
12
)+sinxcosx,求:
(1)f(x)的最值;
(2)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案