17.某公司做了用戶對其某產(chǎn)品滿意度的問卷調(diào)查.隨機抽取了20名用戶(其中有7名男性用戶和13名女性用戶)的評分,得到如圖所示莖葉圖.對不低于75的評分,認為用戶對產(chǎn)品滿意,否則,認為不滿意.已知對產(chǎn)品滿意用戶中男性有4名.
(I)以此“滿意”的頻率作為概率,求在3人中恰有2人滿意的概率;
(Ⅱ)從以上男性用戶中隨機抽取2人,女性用戶中隨機抽取1人,其中滿意的人數(shù)為ξ,求ξ的分布列與數(shù)學期望.

分析 (Ⅰ)由頻率估計“滿意”的概率為0.3,由此利用n次獨立重復試驗概率計算公式能求出在3人中恰有2人滿意的概率.
(Ⅱ)由已知得ξ的可能取值為0,1,2,3,分別求出相應的概率,由此能求出ξ的分布列和Eξ.

解答 解:(Ⅰ)由頻率估計“滿意”的概率為$\frac{6}{20}$=0.3,
∴在3人中恰有2人滿意的概率為${C}_{3}^{2}×0.{3}^{2}×(1-0.3)$=0.189.
(Ⅱ)由已知得ξ的可能取值為0,1,2,3,
P(ξ=0)=$\frac{{C}_{3}^{2}}{{C}_{7}^{2}}•\frac{{C}_{11}^{1}}{{C}_{13}^{1}}$=$\frac{11}{91}$,
P(ξ=1)=$\frac{{C}_{3}^{1}{C}_{4}^{1}}{{C}_{7}^{2}}$•$\frac{{C}_{11}^{1}}{{C}_{13}^{1}}$+$\frac{{C}_{3}^{2}}{{C}_{7}^{2}}•\frac{{C}_{2}^{1}}{{C}_{13}^{1}}$=$\frac{46}{91}$,
P(ξ=2)=$1-\frac{11}{91}-\frac{46}{91}-\frac{4}{91}$=$\frac{30}{91}$,
P(ξ=3)=$\frac{{C}_{4}^{2}}{{C}_{7}^{2}}•\frac{{C}_{2}^{1}}{{C}_{13}^{1}}$=$\frac{4}{91}$,
∴ξ的分布列為:

 ξ 0 1 2 3
 P $\frac{11}{91}$ $\frac{46}{91}$ $\frac{30}{91}$ $\frac{4}{91}$
∴Eξ=$1×\frac{46}{91}$+2×$\frac{30}{91}$+3×$\frac{4}{91}$=$\frac{118}{91}$.

點評 本題考查概率的求法,考查離散型隨機變量的分布列及數(shù)學期望的求法,是中檔題,解題時要認真審題,注意n次獨立重復試驗概率計算公式的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也可稱為可入肺顆粒物,我國規(guī)定PM2.5的數(shù)值在0~50ug/m2為空氣質(zhì)量一等,甲、乙兩城市現(xiàn)參加全國“空氣質(zhì)量優(yōu)秀城市”評選,下表是2011至2015年甲乙兩市空氣質(zhì)量一等天數(shù)的記錄(單位:天):
2011年2012年2013年2014年2015年
8677927278
7882888295
(Ⅰ)畫出莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)現(xiàn)要從中選出一個城市為“空氣質(zhì)量優(yōu)秀城市”,你認為選誰更好?說明理由(不用計算);
(Ⅲ)若從甲、乙兩市的2013至2015年這三年記錄中各隨機抽取一年的數(shù)據(jù),求空氣質(zhì)量一等天數(shù)甲市比乙市多的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.甲、乙兩盒中各有除顏色外完全相同的2個紅球和1個白球,現(xiàn)從兩盒中隨機各取一個球,則至少有一個紅球的概率為$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知a,b,c∈R+,用綜合法證明:
(1)(ab+a+b+1)(ab+ac+bc+c2)≥16abc;
(2)2(a3+b3+c3)≥a2(b+c)+b2(a+c)+c2(a+b)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.2016年“五一”期間,高速公路某服務區(qū)從七座以下小型汽車中,按進服務區(qū)的先后每間隔50輛就抽查一輛進行詢問調(diào)查.共詢問調(diào)查40名駕駛員.將他們在某段高速公路的車速(km/h)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),
得到如圖所示的頻率分布直方圖.
(I)求這40輛小型車輛的平均車速(各組數(shù)據(jù)平均值可用其中間數(shù)值代替);
(II)若從車速在[60,70)的車輛中任意抽取2輛,求其中車速在[65,70)的車輛中至少有一輛的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若復數(shù)z=cosθ-$\frac{5}{13}$+($\frac{12}{13}$-sinθ)i(i是虛數(shù)單位)是純虛數(shù),則tanθ的值為( 。
A.-$\frac{12}{5}$B.$\frac{12}{5}$C.-$\frac{5}{12}$D.±$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設(shè)橢圓E1的長半軸長為a1、短半軸長為b1,橢圓E2的長半軸長為a2、短半軸長為b2,若$\frac{{a}_{1}}{{a}_{2}}$=$\frac{_{1}}{_{2}}$,則我們稱橢圓E1與橢圓E2是相似橢圓.已知橢圓E:$\frac{x^2}{2}$+y2=1,其左頂點為A、右頂點為B.
(1)設(shè)橢圓E與橢圓F:$\frac{x^2}{s}$+$\frac{y^2}{2}$=1是“相似橢圓”,求常數(shù)s的值;
(2)設(shè)橢圓G:$\frac{x^2}{2}$+y2=λ(0<λ<1),過A作斜率為k1的直線l1與橢圓G僅有一個公共點,過橢圓E的上頂點為D作斜率為k2的直線l2與橢圓G僅有一個公共點,當λ為何值時|k1|+|k2|取得最小值,并求其最小值;
(3)已知橢圓E與橢圓H:$\frac{x^2}{2}$+$\frac{y^2}{t}$=1(t>2)是相似橢圓.橢圓H上異于A、B的任意一點C(x0,y0),求證:△ABC的垂心M在橢圓E上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列說法正確的是( 。
A.“f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的必要不充分條件
B.若p:?x0∈R,x${\;}_{0}^{2}$-x0-1>0,則¬p:?x∈R,x2-x-1<0
C.命題“若x2-1=0,則x=1或x=-1”的否命題是“若x2-1≠0,則x≠1或x≠-1”
D.命題p和命題q有且僅有一個為真命題的充要條件是(¬p∧q)∨(¬q∧p)為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知集合A={x|x2-4x>0},B={x|x>1},則(∁RA)∩B=(  )
A.{x|x>4或x<0}B.{x|1<x<4}C.{x|1<x≤4}D.{x|1≤x≤4}

查看答案和解析>>

同步練習冊答案