化簡
sin20°-2cos10°
cos20°
=
 
考點(diǎn):二倍角的余弦
專題:計(jì)算題,三角函數(shù)的求值
分析:將100拆成300-200.利用差角的余弦求解即可.
解答: 解:
sin20°-2cos(30°-20°)
cos20°
=
sin20°-2(
3
2
cos20°+
1
2
sin20°)
cos20°
=
-
3
cos20°
cos20°
=-
3

故答案為:-
3
點(diǎn)評(píng):本題主要考查兩角差的余弦公式的運(yùn)用,正確記住公式是關(guān)鍵,屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=x+2,點(diǎn)P是曲線y=x2-lnx上任意一點(diǎn),求點(diǎn)P到該已知直線的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試確定m的值,使過點(diǎn)A(m,1),B(-1,m)的直線與過點(diǎn)P(1,2),Q(-5,0)的直線:
(1)平行;
(2)垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,|φ|<
π
2
)的一段圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向右平移
π
8
個(gè)單位,得到y(tǒng)=g(x)的圖象,求直線y=
6
與函數(shù)y=
2
g(x)的圖象在(0,π)內(nèi)所有交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin 
π
4
x的圖象上每一點(diǎn)向右平移3個(gè)單位,再將所得圖象上每一點(diǎn)的橫坐標(biāo)擴(kuò)大為原來的
π
4
倍(縱坐標(biāo)保持不變),得函數(shù)y=f(x)的圖象,則f(x)的一個(gè)解析式為f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

各項(xiàng)均為正數(shù)的數(shù)列{an},其前n項(xiàng)和為Sn,且滿足a1>1,6Sn=an2+3an+2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}前n項(xiàng)和為Tn,且滿足an+1Tn=anTn+1-9n2-3n+2.問b1為何值時(shí),數(shù)列{bn}為等差數(shù)列;
(Ⅲ) 求證:
1
a1
+
1
a2
+…+
1
an
2
3
(
3n+2
-
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

作出函數(shù)f(x)=ln
x-sinx
x+sinx
的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A′B′C′D′的棱長為a.
(1)求A′B和B′C的夾角;
(2)求證:A′B⊥AC′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為大于1的常數(shù),函數(shù)f(x)=
logax  x>0
ax+1  x≤0
,若關(guān)于x的方程f2(x)-b•f(x)=0恰有三個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)b的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案