15.sin315°sin(-1260°)+cos390°sin(-1020°)=$\frac{3}{4}$.

分析 利用誘導(dǎo)公式以及特殊角的三角函數(shù)化簡(jiǎn)求值即可.

解答 解:sin315°sin(-1260°)+cos390°sin(-1020°)
=-sin45°sin180°+cos30°sin60°=$\frac{3}{4}$.
故答案為:$\frac{3}{4}$.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式以及特殊角的三角函數(shù)求值,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)$f(x)=\frac{sinx}{x^2}$,則f′(π)=-$\frac{1}{{π}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知f(x)=ex-ax-1為增函數(shù),則a的取值范圍為a≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)是R上的奇函數(shù),對(duì)于?x∈(0,+∞)都有f(x+2)=-f(x),且x∈(0,1]時(shí),f(x)=2x+1,則f(-2015)+f(2016)的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知曲線f(x)=x3-2x2+1
(1)求在點(diǎn)P(1,0)處的切線l1的方程;
(2)求經(jīng)過(guò)點(diǎn)Q(2,1)且與已知曲線f(x)相切的直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.i是虛數(shù)單位,若復(fù)數(shù)(2+i)(a-2i)是純虛數(shù),則實(shí)數(shù)a的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在區(qū)間(0,4]內(nèi)隨機(jī)取兩個(gè)數(shù)a、b,則使得“命題‘?x∈R,不等式x2+ax+b2>0恒成立’為真命題”的概率為(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,PA=AB=2,AD=4,E為線段PD上一點(diǎn),且$\frac{PE}{PD}$=$\frac{1}{2}$.
(1)求異面直線PB與EC所成角的余弦值.
(2)求平面PAB與平面ACE所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)平面三點(diǎn)A(1,0),B(0,1),C(2,5).
(1)試求向量$2\overrightarrow{AB}$+$\overrightarrow{AC}$的模;
(2)試求向量$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角.

查看答案和解析>>

同步練習(xí)冊(cè)答案