【題目】已知橢圓M: + =1(a>0)的一個焦點為F(﹣1,0),左右頂點分別為A,B,經過點F的直線l與橢圓M交于C,D兩點.
(Ⅰ)求橢圓方程;
(Ⅱ)記△ABD與△ABC的面積分別為S1和S2 , 求|S1﹣S2|的最大值.
【答案】解:(Ⅰ)因為F(﹣1,0)為橢圓的焦點,所以c=1, 又b= ,所以a=2,
所以橢圓方程為 =1;
(Ⅱ)直線l無斜率時,直線方程為x=﹣1,
此時D(﹣1, ),C(﹣1,﹣ ),△ABD,△ABC面積相等,|S1﹣S2|=0,
當直線l斜率存在(顯然k≠0)時,設直線方程為y=k(x+1)(k≠0),
設C(x1 , y1),D(x2 , y2),
和橢圓方程聯(lián)立,消掉y得(3+4k2)x2+8k2x+4k2﹣12=0,
顯然△>0,方程有根,且x1+x2=﹣ ,x1x2= ,
此時|S1﹣S2|=2||y1|﹣|y2||=2|y1+y2|=2|k(x2+1)+k(x1+1)|
=2|k(x2+x1)+2k|= = ≤ = ,(k=± 時等號成立)
所以|S1﹣S2|的最大值為
【解析】(Ⅰ)由焦點F坐標可求c值,根據a,b,c的平方關系可求得a值;(Ⅱ)當直線l不存在斜率時可得,|S1﹣S2|=0;當直線l斜率存在(顯然k≠0)時,設直線方程為y=k(x+1)(k≠0),與橢圓方程聯(lián)立消y可得x的方程,根據韋達定理可用k表示x1+x2 , x1x2 , |S1﹣S2|可轉化為關于x1 , x2的式子,進而變?yōu)殛P于k的表達式,再用基本不等式即可求得其最大值.
科目:高中數學 來源: 題型:
【題目】某重點中學100位學生在市統(tǒng)考中的理科綜合分數,以, , , , , , 分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求理科綜合分數的眾數和中位數;
(3)在理科綜合分數為, , , 的四組學生中,用分層抽樣的方法抽取11名學生,則理科綜合分數在的學生中應抽取多少人?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的離心率為,橢圓上一點到左右兩個焦點的距離之和是4.
(1)求橢圓的方程;
(2)已知過的直線與橢圓交于兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知關于x的不等式:|2x﹣m|≤1的整數解有且僅有一個值為2.
(Ⅰ)求整數m的值;
(Ⅱ)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某中學高三文科班學生共有800人參加了數學與地理的水平測試,學校決定利用隨機數表法從中抽取100人進行成績抽樣調查,先將800人按001,002,…,800進行編號.
(1)如果從第8行第7列的數開始向右讀,請你依次寫出最先檢查的3個人的編號;(下面摘取了第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的數學與地理的水平測試成績如下表:
人 數 | 數 學 | |||
優(yōu) 秀 | 良 好 | 及 格 | ||
地 理 | 優(yōu) 秀 | 7 | 20 | 5 |
良 好 | 9 | 18 | 6 | |
及 格 | a | 4 | b |
成績分為優(yōu)秀、良好、及格三個等級;橫向、縱向分別表示地理成績與數學成績,例如:表中數學成績?yōu)榱己玫墓灿?/span>.
①若在該樣本中,數學成績優(yōu)秀率是,求 的值:
②在地理成績及格的學生中,已知,,求數學成績優(yōu)秀的人數比及格的人數少的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知F1 , F2是橢圓 的左、右焦點,點P在橢圓C上,線段PF2與圓x2+y2=b2相切于點Q,且點Q為線段PF2的中點,則 (其中e為橢圓C的離心率)的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com