【題目】在直角坐標系中,已知橢圓的上頂點坐標為,離心率為.

1)求橢圓的標準方程;

2)若橢圓上的點的橫坐標為,且位于第一象限,點關于軸的對稱點為點是位于直線異側的橢圓上的動點.

①若直線的斜率為,求四邊形面積的最大值;

②若動點滿足,試探求直線的斜率是否為定值?說明理由.

【答案】12)①②為定值,見解析

【解析】

1)直接根據(jù)橢圓的幾何性質(zhì)求解;

2)由(1)可得點坐標為,則,

①設直線方程,聯(lián)立橢圓方程,設,得韋達定理,表示出四邊形面積,從而求出四邊形面積最大值為;

②由題意可得直線斜率與直線斜率互為相反數(shù),設直線的方程,聯(lián)立橢圓方程,設,得兩根之和,求得,設,同理可得,根據(jù)斜率計算公式得直線的斜率為定值

解:(1)由題意,可得,

則橢圓的標準方程為

2)由(1)可得點坐標為,則,

①設直線方程為,聯(lián)立橢圓方程,

化簡可得,

,則,

∴當時,四邊形面積最大值為;

②由題意,因為,則直線斜率與直線斜率互為相反數(shù)

設直線的方程為,聯(lián)立橢圓方程

化簡可得,設,

,又,所以

,同理可得

所以,

所以直線的斜率為定值

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)兩種零件,其質(zhì)量測試按指標劃分,指標大于或等于的為正品,小于的為次品.現(xiàn)隨機抽取這兩種零件各100個進行檢測,檢測結果統(tǒng)計如下:

測試指標

零件

8

12

40

30

10

零件

9

16

40

28

7

(Ⅰ)試分別估計兩種零件為正品的概率;

(Ⅱ)生產(chǎn)1個零件,若是正品則盈利50元,若是次品則虧損10元;生產(chǎn)1個零件,若是正品則盈利60元,若是次品則虧損15元,在(Ⅰ)的條件下:

(i)設為生產(chǎn)1個零件和一個零件所得的總利潤,求的分布列和數(shù)學期望;

(ii)求生產(chǎn)5個零件所得利潤不少于160元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,平面平面,底面為梯形, ,且均為正三角形, 的重心.

(1)求證: 平面;

(2)求平面與平面所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若函數(shù)上無零點,則( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),若以該直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為:(其中為常數(shù)).

(1)若曲線與曲線有兩個不同的公共點,求的取值范圍;

(2)當時,求曲線上的點與曲線上點的最小距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,,,都是常數(shù),,.若的零點為,,則下列不等式正確的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃.2018年某企業(yè)計劃引進新能源汽車生產(chǎn)設備,通過市場分析,全年需投入固定成本2500萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價5萬元,且全年內(nèi)生產(chǎn)的車輛當年能全部銷售完.

1)求出2018年的利潤Lx)(萬元)關于年產(chǎn)量x(百輛)的函數(shù)關系式;(利潤=銷售額-成本)

22018年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=x2+2alnx.

(1)若函數(shù)fx)的圖象在(2f2))處的切線斜率為1,求實數(shù)a的值;

(2)若函數(shù)[12]上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為為參數(shù)).以為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的極坐標方程和曲線的直角坐標方程;

(2)設動直線分別與曲線相交于點,,求當為何值時,取最大值,并求的最大值.

查看答案和解析>>

同步練習冊答案