【題目】已知a、b、c三個實數(shù)成等差數(shù)列,則直線bx+ay+c=0與拋物線 的相交弦中點的軌跡方程是

【答案】x+1=﹣(2y﹣1)2(y≠1)
【解析】解:設直線bx+ay+c=0與拋物線 的交點坐標為A(﹣2y12 , y1),B(﹣2y22 , y2), 把x=﹣2y2代入直線方程bx+ay+c=0得:﹣2by2+ay+c=0,
∴y1y2= ,y1+y2= ,
∵a,b,c成等差數(shù)列,∴c=2b﹣a,
∴y1y2= = ﹣1,
設AB的中點為P(x,y),則x=﹣y12﹣y22=﹣(y1+y22+2y1y2=﹣ + ﹣2,
y= =
∴x=﹣4y2+4y﹣2,即x+1=﹣(2y﹣1)2 ,
由△=a2+8bc=a2+8b(2b﹣a)=a2﹣8ab+16b2=(a﹣4b)2>0得a≠4b,
∴y≠1.
所以答案是:x+1=﹣(2y﹣1)2(y≠1).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2cosx,g(x)=ex(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然對數(shù)的底數(shù).(13分)
(Ⅰ)求曲線y=f(x)在點(π,f(π))處的切線方程;
(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),討論h(x)的單調(diào)性并判斷有無極值,有極值時求出極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,側(cè)棱PA⊥底面ABCD,AB=1,PA=2,E為PB的中點,點F在棱PC上,且PF=λPC.

(1)求直線CE與直線PD所成角的余弦值;
(2)當直線BF與平面CDE所成的角最大時,求此時λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1在平面直角坐標系中的參數(shù)方程為 (t為參數(shù)),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,有曲線C2:ρ=2cosθ﹣4sinθ
(1)將C1的方程化為普通方程,并求出C2的平面直角坐標方程
(2)求曲線C1和C2兩交點之間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的圓錐的體積為,圓的直徑,點C的中點,點D是母線PA的中點.

(1)求該圓錐的側(cè)面積;

(2)求異面直線PBCD所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱臺DEF﹣ABC中,AB=2DE,G,H分別為AC,BC的中點.
(Ⅰ)求證:BD∥平面FGH;
(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH與平面ACFD所成的角(銳角)的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】調(diào)查某醫(yī)院某段時間內(nèi)嬰兒出生的時間與性別的關系,得到下面的數(shù)據(jù):出生時間在晚上的男嬰為24人,女嬰為8人;出生時間在白天的男嬰為31人,女嬰為26人.

(1)將2×2列聯(lián)表補充完整.

性別

出生時間

總計

晚上

白天

男嬰

女嬰

總計

(2)能否在犯錯誤的概率不超過0.1的前提下認為嬰兒性別與出生時間有關系?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知球O是正三棱錐(底面為正三角形,頂點在底面的射影為底面中心)A﹣BCD的外接球,BC=3,AB=2 ,點E在線段BD上,且BD=3BE,過點E作球O的截面,則所得截面圓面積的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)橢圓C:+=1(a>b>0)與x軸交于A、B兩點,點P是橢圓C上異于A、B的任意一點,直線PA、PB分別與y軸交于點M、N,求證:為定值b2﹣a2

(2)由(1)類比可得如下真命題:雙曲線C:=1(a>0,b>0)與x軸交于A、B兩點,點P是雙曲線C上異于A、B的任意一點,直線PA、PB分別與y軸交于點M、N,則為定值.請寫出這個定值(不要求給出解題過程).

查看答案和解析>>

同步練習冊答案