11.復數(shù)$\frac{3+i}{i^2}$(i為虛數(shù)單位)的虛部等于-1.

分析 直接利用復數(shù)的運算法則化簡求解即可.

解答 解:復數(shù)$\frac{3+i}{i^2}$=-3-i.
所以復數(shù)的虛部為:-1.
故答案為:-1.

點評 本題考查復數(shù)的代數(shù)形式混合運算,復數(shù)的基本概念,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(2x+1)的定義域為(-1,0),則函數(shù)f(x)的定義域為[-1,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,直線l是湖岸線,O是l上一點,弧$\widehat{AB}$是以O(shè)為圓心的半圓形棧橋,C為湖岸線l上一觀景亭,現(xiàn)規(guī)劃在湖中建一小島D,同時沿線段CD和DP(點P在半圓形棧橋上且不與點A,B重合)建棧橋,考慮到美觀需要,設(shè)計方案為DP=DC,∠CDP=60°且圓弧棧橋BP在∠CDP的內(nèi)部,已知BC=2OB=2(km),設(shè)湖岸BC與直線棧橋CD,DP是圓弧棧橋BP圍成的區(qū)域(圖中陰影部分)的面積為S(km2),∠BOP=θ
(1)求S關(guān)于θ的函數(shù)關(guān)系式;
(2)試判斷S是否存在最大值,若存在,求出對應(yīng)的cosθ的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則f(x)的解析式為( 。
A.$f(x)=\sqrt{2}sin(\frac{1}{2}x+\frac{π}{3})$B.$f(x)=\sqrt{2}sin(2x+\frac{π}{3})$C.$f(x)=\sqrt{2}sin(2x+\frac{π}{6})$D.$f(x)=\sqrt{2}sin(\frac{1}{2}x+\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)f(x)可導,則$\lim_{△x→0}\frac{f(1-△x)-f(1)}{2△x}$=( 。
A.-2f'(1)B.$\frac{1}{2}f'(1)$C.$-\frac{1}{2}f'(1)$D.$f({\frac{1}{2}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.六人站成一排,甲,乙之間恰間隔兩人,有( 。┓N不同的站法.
A.288B.144C.108D.72

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在△ABC中,角A,B,C的對邊分別是a,b,c,若a=20,b=10,B=31°,則△ABC解的情況是( 。
A.無解B.有一解C.有兩解D.有無數(shù)個解

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知$\overrightarrow a,\overrightarrow b,\overrightarrow c$是同一平面內(nèi)的三個向量,其中$\overrightarrow a=(1,2)$.
(1)若|$\overrightarrow b$|=3$\sqrt{5}$,且$\overrightarrow a$∥$\overrightarrow b$,求$\overrightarrow b$的坐標.
(2)若|$\overrightarrow c$|=$\sqrt{10}$,且2$\overrightarrow{a}$+$\overrightarrow{c}$與4$\overrightarrow a-3\overrightarrow c$垂直,求$\overrightarrow a$與$\overrightarrow c$的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在吸煙與患肺病是否有關(guān)的計算中,有下面說法:
①若x2=6.635,我們有99%的把握判定吸煙與患肺病有關(guān)聯(lián),那么在100個吸煙的人中必有99個人患肺。
②由獨立性檢驗可知有99%的把握判定吸煙與患肺病有關(guān)聯(lián)時,若某人吸煙,那么他有99%的可能患有肺;
③從統(tǒng)計量中求出有95%的把握判定吸煙與患肺病有關(guān)聯(lián),是指有5%的可能性使得推斷出現(xiàn)錯誤;
其中說法正確的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案