8.下列說法正確的是( 。
A.底面是正多邊形,側(cè)面都是正三角形的棱錐是正棱錐
B.各個側(cè)面都是正方形的棱柱一定是正棱柱
C.對角面是全等的矩形的直棱柱是長方體
D.兩底面為相似多邊形,且其余各面均為梯形的多面體必為棱臺

分析 想要判斷命題的真假,我們只要根據(jù)正棱錐及長方體、正棱柱、棱臺的有關(guān)的特征四個結(jié)論逐一進行判斷即可得到答案.

解答 解:對于A,底面是正多邊形,側(cè)面都是正三角形的棱錐是正棱錐,正確;
對于B,由棱柱的定義可得:棱柱的側(cè)面都是矩形,所以各側(cè)面都是正方形的棱柱一定是直棱柱,但是底面不一定是正多邊形,所以不正確;
對于C,根據(jù)棱柱與平行六面體的定義可得不正確;
對于D,棱臺的側(cè)棱的延長線交于一點,故不正確.
故選:A.

點評 本題主要考查棱柱的有關(guān)定義以及棱柱的結(jié)構(gòu)特征.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線C在直角坐標(biāo)系xOy下的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)).以O(shè)為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(Ⅱ)直線l的極坐標(biāo)方程是ρcos(θ-$\frac{π}{6}$)=3$\sqrt{3}$,射線OT:θ=$\frac{π}{3}$(ρ>0)與曲線C交于A點,與直線l交于B,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.知函數(shù)f(x)=$\frac{{x}^{2}}{{x}^{2}+1}$+ax為偶函數(shù).
(1)求a的值;
(2)用定義法證明函數(shù)f(x)在區(qū)間[0,+∞)上是增函數(shù);
(3)解關(guān)于x的不等式f(2x-1)<f(x+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若a,b,c∈R,且a>b,則下列不等式正確的個數(shù)是( 。
①$\frac{1}{a}$<$\frac{1}$     ②a2>b2      ③ac4>bc4    ④$\frac{a}{{c}^{2}+1}$>$\frac{{c}^{2}+1}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知實數(shù)x,y滿足可行域$D:\left\{\begin{array}{l}x+2y-4≤0\\ 3x-2y+6≥0\\ y≥0\end{array}\right.$,曲線C:|x|+|y|-a=0恰好平分可行域D的面積,則a的值為( 。
A.2B.$\frac{{3\sqrt{2}}}{2}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{{3\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知$(1-\frac{1}{x}){(1+x)^5}$的展開式中x3項的系數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=(ax+b)lnx-bx+3在(1,f(1))處的切線方程為y=2.
(1)求a,b的值及函數(shù)f(x)的極值;
(2)證明:$\frac{ln2}{2}×\frac{ln3}{3}×\frac{ln4}{4}×…×\frac{lnn}{n}<\frac{1}{n}(n≥2,n∈N)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為π,且其圖象向左平移$\frac{π}{3}$個單位后得到函數(shù)g(x)=cosωx的圖象,則函數(shù)f(x)的圖象( 。
A.關(guān)于直線x=$\frac{π}{12}$對稱B.關(guān)于直線x=$\frac{5π}{12}$對稱
C.關(guān)于點($\frac{π}{12}$,0)對稱D.關(guān)于點($\frac{5π}{12}$,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的長軸長為4,焦距為2.
(Ⅰ) 求C的方程;
(Ⅱ) 過點P(0,3)的直線m與軌跡C交于A,B兩點.若A是PB的中點,求直線m的斜率.

查看答案和解析>>

同步練習(xí)冊答案