17.下列函數(shù)為奇函數(shù)的是(  )
A.$y=\sqrt{x}$B.y=exC.y=|x|D.y=ex-e-x

分析 根據(jù)函數(shù)的奇偶性的定義判斷判斷即可.

解答 解:對于A:定義域不關(guān)于原點對稱,不是奇函數(shù);
對于B:不滿足f(-x)=-f(x)不是奇函數(shù);
對于C:y=|x|是偶函數(shù);
對于D:f(-x)=e-x-ex=-(ex-e-x)=-f(x),則f(x)為奇函數(shù);
故選:D.

點評 本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性定義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.6月23日15時前后,江蘇鹽城市阜寧、射陽等地突遭強冰雹、龍卷風(fēng)雙重災(zāi)害襲擊,風(fēng)力達(dá)12級.災(zāi)害發(fā)生后,有甲、乙、丙、丁4個輕型救援隊從A,B,C,D四個不同的方向前往災(zāi)區(qū).
已知下面四種說法都是正確的.
(1)甲輕型救援隊所在方向不是C方向,也不是D方向; 
(2)乙輕型救援隊所在方向不是A方向,也不是B方向; 
(3)丙輕型救援隊所在方向不是A方向,也不是B方向; 
(4)丁輕型救援隊所在方向不是A方向,也不是D方向.
此外還可確定:如果丙所在方向不是D方向,那么甲所在方向就不是A方向.有下列判斷:
①甲所在方向是B方向;②乙所在方向是D方向;③丙所在方向是D方向;④丁所在方向是C方向.
其中判斷正確的序號是③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)a為實數(shù),函數(shù)f(x)=x3+ax2+(a-3)x的導(dǎo)函數(shù)為f′(x),且f′(x)是偶函數(shù),則曲線y=f(x)在x=2處切線的斜率為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知向量$\overrightarrow{a}$與向量$\overrightarrow$垂直,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,則|2$\overrightarrow{a}$-$\overrightarrow$|=( 。
A.0B.$2\sqrt{2}$C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知sinα=$\frac{4}{5}$,tan(α+β)=1,且α是第二象限的角,那么tanβ的值是( 。
A.$\frac{4}{3}$B.-$\frac{4}{3}$C.7D.-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=3sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期為π,則f(x)的圖象( 。
A.關(guān)于直線$x=\frac{π}{4}$對稱B.關(guān)于點$(\frac{π}{4},0)$對稱
C.關(guān)于直線$x=\frac{π}{12}$對稱D.關(guān)于點$(\frac{π}{12},0)$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則函數(shù)在[-$\frac{π}{8}$,$\frac{π}{16}$]的值域為(  )
A.[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]B.[-1,$\frac{\sqrt{3}}{2}$]C.[-$\frac{1}{2}$,1]D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=$\frac{1}{2-x}$的圖象與函數(shù)y=2sinπx(-2≤x≤6)的圖象所有交點的橫坐標(biāo)之和等于( 。
A.8B.12C.16D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.對于下列命題:其中所有真命題的序號是①②④.
①函數(shù)f(x)=ax+1-2a在區(qū)間(0,1)內(nèi)有零點的充分不必要條件是$\frac{1}{2}<a<\frac{2}{3}$;
②已知E,F(xiàn),G,H是空間四點,命題甲:E,F(xiàn),G,H四點不共面,命題乙:直線EF和GH不相交,則甲是乙成立的充分不必要條件;
③“a<2”是“對任意的實數(shù)x,|x+1|+|x-1|≥a恒成立”的充要條件;
④“0<m<1”是“方程mx2+(m-1)y2=1表示雙曲線”的充分必要條件.
⑤$cos{20°}•cos{40°}•cos{80°}=\frac{1}{16}$.

查看答案和解析>>

同步練習(xí)冊答案