【題目】如圖,已知橢圓O: 的右焦點(diǎn)為F,點(diǎn)B,C分別是橢圓O的上、下頂點(diǎn),點(diǎn)P是直線l:y=-2上的一個(gè)動(dòng)點(diǎn)(與y軸交點(diǎn)除外),直線PC交橢圓于另一點(diǎn)M.
(1)當(dāng)直線PM過(guò)橢圓的右焦點(diǎn)F時(shí),求△FBM的面積;
(2)記直線BM,BP的斜率分別為k1,k2,求證:k1·k2為定值.
【答案】(1) ,(2)見(jiàn)解析.
【解析】試題分析:
(1)由題知B(0,1),C(0,-1), ,滿足題意時(shí),直線PM的方程為,與橢圓方程聯(lián)立可得: ,直線BF的方程為,則三角形的高為,底邊,三角形的面積為.
(2)設(shè)P(m,-2),且m≠0,則直線PM的方程為,與橢圓方程聯(lián)立可得,則,據(jù)此可得k1·k2為定值.
試題解析:
(1)由題知B(0,1),C(0,-1),焦點(diǎn)F(,0),
當(dāng)直線PM過(guò)橢圓的右焦點(diǎn)F時(shí),
直線PM的方程為+=1,即y=x-1.
聯(lián)立解得或 (舍),所以M.連接BF,則直線BF的方程為+=1,
即x+y-=0,
而BF=a=2,所以點(diǎn)M到直線BF的距離為
d===.
故S△MBF=·BF·d=×2×=.
(2)設(shè)P(m,-2),且m≠0,
則直線PM的斜率為k==-,
則直線PM的方程為y=-x-1,
聯(lián)立化簡(jiǎn)得x2+x=0,
解得M,
所以k1===m,k2==-,
所以k1·k2=-·m=-為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)點(diǎn)到定點(diǎn)的距離比它到直線的距離小1,設(shè)動(dòng)點(diǎn)的軌跡為曲線,過(guò)點(diǎn)的直線交曲線于、兩個(gè)不同的點(diǎn),過(guò)點(diǎn)、分別作曲線的切線,且二者相交于點(diǎn).
(Ⅰ)求曲線的方程;
(Ⅱ)求證: ;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列中,,其前項(xiàng)和滿足:.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求證: ;
(3)設(shè)(為非零整數(shù),),是否存在確定的值,使得對(duì)任意,有恒成立.若存在求出的值,若不存在說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),,,,若.
⑴ 求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
⑵ 將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個(gè)單位,得到函數(shù)的圖象,求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,
(1)當(dāng)時(shí),求的最大值和最小值;
(2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過(guò)點(diǎn)A的動(dòng)直線l與E相交于P,Q兩點(diǎn).當(dāng)△OPQ的面積最大時(shí),求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),圓,點(diǎn)是圓上一動(dòng)點(diǎn), 的垂直平分線與交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,過(guò)點(diǎn)且斜率不為0的直線與交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明直線過(guò)定點(diǎn),并求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓,B為橢圓上任一點(diǎn),F為橢圓左焦點(diǎn),已知的最小值與最大值之和為4,且離心率,拋物線的通徑為4.
求橢圓和拋物線的方程;
設(shè)坐標(biāo)原點(diǎn)為O,A為直線與已知拋物線在第一象限內(nèi)的交點(diǎn),且有.
試用k表示A,B兩點(diǎn)坐標(biāo);
是否存在過(guò)A,B兩點(diǎn)的直線l,使得線段AB的中點(diǎn)在y軸上?若存在,求出直線l的方程,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過(guò)的包裹收費(fèi)元;重量超過(guò)的包裹,除收費(fèi)元之外,超過(guò)的部分,每超出(不足,按計(jì)算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計(jì)如下:
包裹重量(單位: ) | |||||
包裹件數(shù) |
公司對(duì)近天,每天攬件數(shù)量統(tǒng)計(jì)如下表:
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) |
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計(jì)算該公司未來(lái)天內(nèi)恰有天攬件數(shù)在之間的概率;
(2)(i)估計(jì)該公司對(duì)每件包裹收取的快遞費(fèi)的平均值;
(ii)公司將快遞費(fèi)的三分之一作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的用作其他費(fèi)用.目前前臺(tái)有工作人員人,每人每天攬件不超過(guò)件,工資元.公司正在考慮是否將前臺(tái)工作人員裁減人,試計(jì)算裁員前后公司每日利潤(rùn)的數(shù)學(xué)期望,并判斷裁員是否對(duì)提高公司利潤(rùn)更有利?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com