19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(a-2)x-1,x≤1}\\{\frac{ax+1}{x+a},x>1}\end{array}\right.$在(-∞,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍為( 。
A.(1,4]B.(2,4]C.(2,4)D.(2,+∞)

分析 根據(jù)f(x)=$\left\{\begin{array}{l}{(a-2)x-1,x≤1}\\{a+\frac{1{-a}^{2}}{x+a},x>1}\end{array}\right.$ 在(-∞,+∞)上單調(diào)遞增,可得 $\left\{\begin{array}{l}{a-2>0}\\{1{-a}^{2}<0}\\{a-2-1≤\frac{a+1}{1+a}}\end{array}\right.$,由此求得實數(shù)a的取值范圍.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{(a-2)x-1,x≤1}\\{\frac{ax+1}{x+a},x>1}\end{array}\right.$=$\left\{\begin{array}{l}{(a-2)x-1,x≤1}\\{a+\frac{1{-a}^{2}}{x+a},x>1}\end{array}\right.$ 在(-∞,+∞)上單調(diào)遞增,∴$\left\{\begin{array}{l}{a-2>0}\\{1{-a}^{2}<0}\\{a-2-1≤\frac{a+1}{1+a}}\end{array}\right.$,
求得2<a≤4,
故選:B.

點評 本題主要考查函數(shù)的單調(diào)性的性質(zhì),屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知sin(3π+θ)=$\frac{1}{2}$,求$\frac{cos(3π+θ)}{cosθ[cos(π+θ)-1]}$+$\frac{cos(θ-4π)}{cos(θ+2π)cos(3π+θ)+cos(-θ)}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某校從高一年級學生中隨機抽取40名學生,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖的頻率分布直方圖.
(1)求圖中實數(shù)a的值;
(2)若從數(shù)學成績在[40,50)與[90,100]兩個分數(shù)段內(nèi)的學生中隨機選取兩名學生,求這兩名學生的數(shù)學成績之差的絕對值不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)f(x)=x2-2ax+2在區(qū)間(-∞,1]上遞減,則a的取值范圍是a≥1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.等比數(shù)列{an}的各項均為正數(shù),且a3a7+a4a6=8,則log2a1+log2a2+…+log2a9=( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.觀察下列散點圖,其中兩個變量的相關關系判斷正確的是(  )
A.a為正相關,b為負相關,c為不相關B.a為負相關,b為不相關,c為正相關
C.a為負相關,b為正相關,c為不相關D.a為正相關,b為不相關,c為負相關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=x2-ax的圖象在點A(1,f(1))處的切線l與直線x+3y+2=0垂直,若數(shù)列{$\frac{1}{f(n)}$}的前n項和為Sn,則S2017的值為(  )
A.$\frac{2014}{2015}$B.$\frac{2015}{2016}$C.$\frac{2016}{2017}$D.$\frac{2017}{2018}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設函數(shù)f(x)=sin(2x+φ)(φ∈[0,π]),其導數(shù)f'(x)的圖象向右平移$\frac{π}{3}$個單位后關于原點對稱,
則φ=( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x),如果存在給定的實數(shù)對(a,b),使得f(a+x)•f(a-x)=b恒成立,則稱f(x)為“Γ-函數(shù)”.
(1)判斷函數(shù)f1(x)=x,${f_2}(x)={3^x}$是否是“Γ-函數(shù)”;
(2)若f3(x)=tanx是一個“Γ-函數(shù)”,求出所有滿足條件的有序?qū)崝?shù)對(a,b);
(3)若定義域為R的函數(shù)f(x)是“Γ-函數(shù)”,且存在滿足條件的有序?qū)崝?shù)對(0,1)和(1,4),當x∈[0,1]時,f(x)的值域為[1,2],求當x∈[-2016,2016]時函數(shù)f(x)的值域.

查看答案和解析>>

同步練習冊答案