14.若復(fù)數(shù)z=$\frac{1+i}{1-i}$+m(1-i)(i為虛數(shù)單位)為純虛數(shù),則實數(shù)m的為( 。
A.0B.1C.-1D.2

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運算化簡復(fù)數(shù)z,又已知復(fù)數(shù)z為純虛數(shù),列出方程組,求解即可得答案.

解答 解:∵z=$\frac{1+i}{1-i}$+m(1-i)=$\frac{(1+i)^{2}}{(1-i)(1+i)}+m-mi=i+m-mi$=m+(1-m)i為純虛數(shù),
∴$\left\{\begin{array}{l}{m=0}\\{1-m≠0}\end{array}\right.$,
解得m=0.
則實數(shù)m的值為:0.
故選:A.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)y=$\frac{1}{2}$loga(a2x)•loga(ax)(2≤x≤4)的最大值是0,最小值是-$\frac{1}{8}$,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知x為三角形中的最小角,則函數(shù)y=sin(x+$\frac{π}{3}$)+sin(x-$\frac{π}{3}$)+$\sqrt{3}$cosx+1的值域為[$\sqrt{3}$+1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=x2+ax+b,a≠b,則f(2)=4是f(a)=f(b)的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.不是充分條件,也不是必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.原命題為“若復(fù)數(shù)z1,z2滿足z1=±z2,則|z1|=|z2|”,關(guān)于其逆命題,否命題,逆否命題真假性的判斷依次如下,正確的是( 。
A.真,假,真B.假,假,真C.真,真,假D.假,假,假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.我國是世界上嚴(yán)重缺水的國家,城市缺水尤為突出,某市為了制定合理的節(jié)水方案,從該市隨機調(diào)查了100位居民,獲得了他們某月的用水量,整理得到如圖的頻率分布直方圖.
(1)求圖中a的值并估計樣本的眾數(shù);
(2)該市計劃對居民生活用水試行階梯水價,即每位居民月用水量不超過ω噸的按2元/噸收費,超過ω噸不超過2ω噸的部分按4元/噸收費,超過2ω噸的部分按照10元/噸收費.
①用樣本估計總體,為使75%以上居民在該月的用水價格不超過4元/噸,ω至少定為多少?
②假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,當(dāng)ω=2時,估計該市居民該月的人均水費.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{2}$x2-2alnx+(a-2)x,a∈R.
(1)若函數(shù)f(x)在(2,+∞)上為單調(diào)遞增函數(shù),求實數(shù)a的范圍;
(2)試討論f(x)在[2,e]上的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知點A(-2,3),B(3,2),過點P(0,-2)的直線L與線段AB有公共點,求直線L的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.計算:($\frac{1}{2}$)-1+($\frac{1}{4}$)0-9${\;}^{\frac{1}{2}}$=0.

查看答案和解析>>

同步練習(xí)冊答案