【題目】已知函數(shù).
(1)討論的單調性;
(2)令函數(shù)是自然對數(shù)的底數(shù),若函數(shù)有且只有一個零點,判斷與的大小,并說明理由.
【答案】(1)答案見解析;(2),理由見解析
【解析】
(1)求出函數(shù)的導數(shù),通過討論的范圍,求出函數(shù)的單調區(qū)間即可;
(2)根據(jù)函數(shù)的單調性求出在上有唯一零點,由已知函數(shù)有且只有1個零點,則,得,令,故,求出的范圍即可.
解:(1)由已知,且,
當時,恒成立,則在上單調遞增;
當時,令得,,
則在上單調遞增,在上單調遞減.
(2),則,
則,則在上單調遞增,
又當,
故在上有唯一零點,
當,單調遞減;
,單調遞增
故為的最小值,
當,
由已知函數(shù)有且只有一個零點,則,
故,
則,
則,
得,
令,
故,
則,
故,
故在上遞減,
,
故在上有一個零點,在上無零點,
故.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的單調區(qū)間;
(2)若函數(shù)在區(qū)間上有唯一的極值點,求的取值范圍,并證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,空間幾何體中,四邊形是梯形,四邊形是矩形,且平面平面, , , 是線段上的動點.
(1)求證: ;
(2)試確定點的位置,使平面,并說明理由;
(3)在(2)的條件下,求空間幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列的前項和為,,.
(1)求數(shù)列的通項公式;
(2)設數(shù)列滿足:
對于任意,都有成立.
①求數(shù)列的通項公式;
②設數(shù)列,問:數(shù)列中是否存在三項,使得它們構成等差數(shù)列?若存在,求出這三項;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()在定義域內有兩個不同的極值點.
(1)求實數(shù)的取值范圍;
(2)若有兩個不同的極值點,,且,若不等式恒成立.求正實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等腰梯形中(如圖1),,,為線段的中點,、為線段上的點,,現(xiàn)將四邊形沿折起(如圖2)
(1)求證:平面;
(2)在圖2中,若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線:(為參數(shù),),曲線:(為參數(shù)),與相切于點,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.
(1)求的極坐標方程及點的極坐標;
(2)已知直線:與圓:交于,兩點,記的面積為,的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】大慶實驗中學在高二年級舉辦線上數(shù)學知識競賽,在已報名的400名學生中,根據(jù)文理學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…,[80,90],并整理得到如下頻率分布直方圖:
(1)估算一下本次參加考試的同學成績的中位數(shù)和眾數(shù);
(2)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內的人數(shù);
(3)已知樣本中有一半理科生的分數(shù)不小于70,且樣本中分數(shù)不小于70的文理科生人數(shù)相等.試估計總體中理科生和文科生人數(shù)的比例.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com