【題目】已知函數(shù).

1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)在區(qū)間上有唯一的極值點,求的取值范圍,并證明:.

【答案】1)遞增區(qū)間是,遞減區(qū)間是;(2,見解析

【解析】

1)當(dāng)時,求出函數(shù)的定義域和導(dǎo)數(shù),結(jié)合導(dǎo)數(shù)的取值的正負(fù),即可求得函數(shù)的單調(diào)區(qū)間;

2)求得,令,根據(jù)函數(shù)在區(qū)間上有唯一的極值點,得出上有唯一的解,根據(jù)求得的范圍,再由由,得到,結(jié)合函數(shù)的單調(diào)性和最值,即可求解.

1)由題意,函數(shù),

當(dāng)時,函數(shù).

,即,可得,

,即,可得.

所以當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.

2)由函數(shù),則

,

因為在區(qū)間上有唯一的極值點,又,

根據(jù)二次函數(shù)的圖象分析可知,只需即可,即,解得,

所以實數(shù)的取值范圍是,

又由,可得

所以,

又由函數(shù),可得,

可得函數(shù)上單調(diào)遞增,且,

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年底,北京2022年冬奧組委會啟動志愿者全球招募,僅一個月內(nèi)報名人數(shù)便突破60萬,其中青年學(xué)生約有50萬人.現(xiàn)從這50萬青年學(xué)生志愿者中,按男女分層抽樣隨機選取20人進行英語水平測試,所得成績(單位:)統(tǒng)計結(jié)果用莖葉圖記錄如下:

()試估計在這50萬青年學(xué)生志愿者中,英語測試成績在80分以上的女生人數(shù);

()從選出的8名男生中隨機抽取2人,記其中測試成績在70分以上的人數(shù)為X,求的分布列和數(shù)學(xué)期望;

()為便于聯(lián)絡(luò),現(xiàn)將所有的青年學(xué)生志愿者隨機分成若干組(每組人數(shù)不少于5000),并在每組中隨機選取個人作為聯(lián)絡(luò)員,要求每組的聯(lián)絡(luò)員中至少有1人的英語測試成績在70分以上的概率大于90%.根據(jù)圖表中數(shù)據(jù),以頻率作為概率,給出的最小值.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等腰直角中,,點、分別是的中點.現(xiàn)沿邊折起成如圖四棱錐中點.

1)證明:;

2)當(dāng)時,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲盒內(nèi)有大小相同的1個紅球和3個黑球,乙盒內(nèi)有大小相同的3個紅球和3個黑球,現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球。

1求取出的4個球中沒有紅球的概率;

2求取出的4個球中恰有1個紅球的概率;

3設(shè)為取出的4個球中紅球的個數(shù),求的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測數(shù)據(jù),結(jié)果統(tǒng)計如表:

AQI

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

重度污染

天數(shù)

6

14

18

27

25

10

1)從空氣質(zhì)量指數(shù)屬于[050],(50,100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;

2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟損失y(單位:元)與空氣質(zhì)量指數(shù)x的關(guān)系式為,假設(shè)該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴(yán)重污染的概率分別為.9月每天的空氣質(zhì)量對應(yīng)的概率以表中100天的空氣質(zhì)量的頻率代替.

i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟損失為X元,求X的分布列;

ii)試問該企業(yè)7月、8月、9月這三個月因氣質(zhì)量造成的經(jīng)濟損失總額的數(shù)學(xué)期望是否會超過2.88萬元?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四個命題:

①在回歸分析中, 可以用來刻畫回歸效果, 的值越大,模型的擬合效果越好;

②在獨立性檢驗中,隨機變量的值越大,說明兩個分類變量有關(guān)系的可能性越大;

③在回歸方程中,當(dāng)解釋變量每增加1個單位時,預(yù)報變量平均增加1個單位;

④兩個隨機變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對值越接近于1;

其中真命題是:

A. ①④ B. ②④ C. ①② D. ②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品均需用三種原料,一件甲產(chǎn)品需要原料,原料,原料,一件乙產(chǎn)品需要原料原料,原料,出售一件甲產(chǎn)品可獲利7萬元,出售一件乙產(chǎn)品可獲利6萬元,現(xiàn)有原料原料,原料,請問該如何安排生產(chǎn)可使得利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,由直三棱柱和四棱錐構(gòu)成的幾何體中,,平面平面

(I)求證:;

(II)若M為中點,求證:平面;

(III)在線段BC上(含端點)是否存在點P,使直線DP與平面所成的角為?若存在,求得值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)令函數(shù)是自然對數(shù)的底數(shù),若函數(shù)有且只有一個零點,判斷的大小,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案