【題目】函數(shù))的部分圖象如圖中實(shí)線所示,圖中圓C的圖象交于MN兩點(diǎn),且My軸上,則下列說法中正確的是(

A.函數(shù)的最小正周期是2π

B.函數(shù)的圖象關(guān)于點(diǎn)成中心對稱

C.函數(shù)單調(diào)遞增

D.將函數(shù)的圖象向左平移后得到的關(guān)于y軸對稱

【答案】C

【解析】

根據(jù)條件求出c的值,結(jié)合三角函數(shù)的周期關(guān)系求出周期,以及對應(yīng)的對稱軸,對稱中心,利用三角函數(shù)的性質(zhì)分別進(jìn)行判斷即可.

解:根據(jù)函數(shù),)的部分圖象以及圓C的對稱性,

可得,兩點(diǎn)關(guān)于圓心對稱,

,

,

解得:,函數(shù)的周期為,故A錯(cuò)誤;

∵函數(shù)關(guān)于點(diǎn)對稱,

∴函數(shù)的對稱中心為

則當(dāng)時(shí),對稱中心為,故B不正確;

函數(shù)的一條對稱軸為,

x軸負(fù)方向內(nèi),接近于y軸的一條對稱軸為,

由圖像可知,函數(shù)的單調(diào)增區(qū)間為,,

當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,故C正確;

的一條對稱軸為,

∴函數(shù)的圖象向左平移個(gè)單位后,

此時(shí),所得圖象關(guān)于直線對稱,故D錯(cuò)誤.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分兒口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探. 由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見如表:

(Ⅰ)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計(jì)的預(yù)報(bào)值;

(Ⅱ)現(xiàn)準(zhǔn)備勘探新井,若通過1、3、5、7號井計(jì)算出的的值(精確到0.01)相比于(Ⅰ)中的值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?

(參考公式和計(jì)算結(jié)果:

(Ⅲ)設(shè)出油量與勘探深度的比值不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有井號1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若曲線與曲線在它們的某個(gè)交點(diǎn)處具有公共切線,求的值;

(Ⅱ)若存在實(shí)數(shù)使不等式的解集為,求實(shí)數(shù)的取值范圍

(Ⅲ)若方程有三個(gè)不同的解,且它們可以構(gòu)成等差數(shù)列,寫出實(shí)數(shù)的值(只需寫出結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別為雙曲線的左右焦點(diǎn),左右頂點(diǎn)為,是雙曲線上任意一點(diǎn),則分別以線段、為直徑的兩圓的位置關(guān)系為( )

A. 相交B. 相切C. 相離D. 以上情況均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《朗讀者》以精美的文字,最平實(shí)的情感讀出文字背后的價(jià)值,感染了眾多聽眾,中央電視臺在2018年推出了《朗讀者第二季》,電視臺節(jié)目組要從2018名觀眾中抽取50名幸運(yùn)觀眾.先用簡單隨機(jī)抽樣從2018人中剔除18人,剩下的2000人再按系統(tǒng)抽樣方法抽取50人,則在2018人中,每個(gè)人被抽取的可能性 ( )

A. 都相等,且為B. 都相等,且為C. 均不相等D. 不全相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直角的三邊長,滿足.

Ⅰ)在之間插入個(gè)數(shù),使這個(gè)數(shù)構(gòu)成以為首項(xiàng)的等差數(shù)列,且它們的和為,求斜邊的最小值;

Ⅱ)已知均為正整數(shù),成等差數(shù)列,將滿足條件的三角形的面積從小到大排成一列,,求滿足不等式的所有的值;

Ⅲ)已知成等比數(shù)列,若數(shù)列滿足,證明:數(shù)列中的任意連續(xù)三項(xiàng)為邊長均可以構(gòu)成直角三角形,是正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面中兩條直線ln相交于O,對于平面上任意一點(diǎn)M,若p,q分別是M到直線ln的距離,則稱有序非負(fù)實(shí)數(shù)對(p,q)是點(diǎn)M的“距離坐標(biāo)”.則下列說法正確的(

A.p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且僅有一個(gè)

B.pq=0,且p+q0,則“距離坐標(biāo)”為(pq)的點(diǎn)有且僅有2個(gè)

C.pq0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有4個(gè)

D.p=q,則點(diǎn)M的軌跡是一條過O點(diǎn)的直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們稱一個(gè)非負(fù)整數(shù)集合(非空)為好集合,若對任意,或者,或者.以下記的元素個(gè)數(shù).

給出所有的元素均小于的好集合;(給出結(jié)論即可)

求出所有滿足的好集合;(同時(shí)說明理由)

若好集合滿足,求證: 中存在元素,使得中所有元素均為的整數(shù)倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)與常數(shù),若恒成立,則稱為函數(shù)的一個(gè)“數(shù)對”;設(shè)函數(shù)的定義域?yàn)?/span>,且.

(Ⅰ)若的一個(gè)“數(shù)對”,且,求常數(shù)的值;

(Ⅱ)若的一個(gè)“數(shù)對”,求;

(Ⅲ)若的一個(gè)“數(shù)對”,且當(dāng), ,求的值及在區(qū)間上的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊答案