16.首項(xiàng)為a1,公差為d為正整數(shù)的等差數(shù)列{an}滿足下列兩個條件:
(1)a3+a5+a7=93;
(2)滿足an>100的m的最小值是15.
試求公差d和首項(xiàng)a1的值.

分析 由已知結(jié)合等差數(shù)列的性質(zhì)求得a5,再由an>100的n的最小值為15求得d,進(jìn)一步由等差數(shù)列的通項(xiàng)公式求得首項(xiàng).

解答 解:由a3+a5+a7=93,得3a5=93,則a5=31,
由an=a5+(n-5)d>100,得$n>\frac{69}ke93tvl+5$,
又n的最小值為15,
∴14$≤\frac{69}dyhaowi+5<15$,
∵d∈N*,∴d=7,
則a1=a5-4d=31-4×7=3.
故d=7,a1=3.

點(diǎn)評 本題考查等差數(shù)列的通項(xiàng)公式,考查了數(shù)列的函數(shù)特性,考查推理論證能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若△ABC中三個內(nèi)角A,B,C的對邊分別為a,b,c,且$\frac{1+cosB}{sinA}$=$\frac{\sqrt{3}b}{a}$.
(1)求角B;
(2)點(diǎn)D為BC的中點(diǎn),AD=$\frac{\sqrt{3}}{2}$,BC=$\frac{6}{5}$,且sin∠BAD=$\frac{3}{5}$,求AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知實(shí)數(shù)a、b、c滿足a+b+c=0,abc>0,則$\frac{1}{a}+\frac{1}+\frac{1}{c}$的值小于0,.($\frac{1}{a}$$+\frac{1}+\frac{1}{c}$與0比較)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=-$\frac{5}{2}$sin(4x+$\frac{2π}{3}$)的圖象與x軸的各個交點(diǎn)中,距離原點(diǎn)最近的一點(diǎn)的坐標(biāo)是($\frac{π}{12}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知菱形ABCD的邊長為1,∠BAD=120°,若$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{λ+1}$$\overrightarrow{DC}$,其中0<λ<1,$\overrightarrow{AE}$•$\overrightarrow{AF}$的最小值為$\sqrt{6}-2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)$\frac{tan(A-B)}{tanA}$+$\frac{si{n}^{2}C}{si{n}^{2}A}$=1,求證:tan2C=tanAtanB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知點(diǎn)C(-3,2),D(2,-6),則線段CD的中點(diǎn)坐標(biāo)是(-$\frac{1}{2}$,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,(-1≤x≤0)}\\{\sqrt{1-{x}^{2}},(0<x≤1)}\end{array}\right.$,則${∫}_{-1}^{1}$f(x)dx=$\frac{1}{2}$+$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)a∈R,直線l1:ax+2y-1=0,直線l2:x+(a+1)y+4=0,則l1∥l2是a=1的(  )條件.
A.充分不必要B.必要不充分
C.充要D.既不充分且不必要

查看答案和解析>>

同步練習(xí)冊答案