設(shè)a=(
3
2
0.1,b=lnsin
2012π
3
,c=log 
1
3
1
2
,則a,b,c的大小關(guān)系是( 。
A、a>b>c
B、a>c>b
C、b>a>c
D、b>c>a
考點(diǎn):對數(shù)值大小的比較
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出.
解答: 解:∵a=(
3
2
0.1>1,b=lnsin
2012π
3
<0,0<c=log 
1
3
1
2
=log32<1,
∴a>c>b.
故選:B.
點(diǎn)評:本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin(2x+
π
6
)圖象向右平移m(m>0)個單位,得到函數(shù)y=f(x)的圖象,若y=f(x)在區(qū)間[-
π
6
,
π
3
]上單調(diào)遞增,則m的最小值為(  )
A、
π
3
B、
π
4
C、
π
6
D、
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題P:m2-4m+3<0,命題q:方程
x2
m-2
+
y2
m
=1表示的曲線是雙曲線,若“p∨q”為真,“p∧q”為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列式子的值:
(1)(
2
3
2-20150-(
27
8
 -
2
3
;
(2)log3
427
3
+lg25+lg4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2sin2
π
4
-x)-1(x∈R)是( 。
A、最小正周期為2π的奇函數(shù)
B、最小正周期為π的奇函數(shù)
C、最小正周期為π的偶函數(shù)
D、最小正周期為2π的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=BC=2,AD=CD=
7
,PA=
3
,∠ABC=120°,G為線段PC的中點(diǎn).
(1)證明:平面PBD⊥平面PAC;
(2)求DG的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知關(guān)于x的一次函數(shù)y=
a
b
x,其中a∈{-2,-1,2,3},b∈{-2,2,3},求函數(shù)y=
a
b
x在R上是減函數(shù)的概率;
(Ⅱ)已知關(guān)于x的一次函數(shù)y=kx+b,實(shí)數(shù)k,b滿足條件
k+b-1≤0
-1≤k≤1
-1≤b≤1
,求函數(shù)y=kx+b的圖象經(jīng)過一、三、四象限的概率(邊界及坐標(biāo)軸的面積忽略不計(jì)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題“若ab≤0,則a≤0或b≤0”,則下列結(jié)論正確的是(  )
A、這個命題是真命題,否命題是“若ab>0,則a>0或b>0”
B、這個命題是假命題,否命題是“若ab>0,則a>0或b>0”
C、這個命題是真命題,否命題是“若ab>0,則a>0且b>0”
D、這個命題是假命題,否命題是“若ab>0,則a>0且b>0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點(diǎn),點(diǎn)E是該雙曲線的右頂點(diǎn),過點(diǎn)F且垂直于x軸的直線與雙曲線交于A、B兩點(diǎn),△ABE是直角三角形,則該雙曲線的離心率是(  )
A、3B、2C、12D、13

查看答案和解析>>

同步練習(xí)冊答案